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Finally, we want to thank all who worked or contributed to the Icon and Unicon projects, led by R. 
Griswold and later by G. Townsend, and C. Jeffery, respectively, and to all that contributed to the 
tradition of these two programming languages outside of the mentioned projects.  

LAUNCHING THE GENERATOR. 

 t
his is the first issue of The Generator, a journal devoted to the use of the Unicon 
programming language and its predecessor and subset, the Icon programming language. The 
Generator is inspired by The Icon Analyst, a publication edited by Madge and Ralph 

Griswold and Gregg Townsend from 1990 to 2001. We can thank them for the excellent publication 
they produced1, and hope that we'll see some their contributions in years to come. Although The 
Generator can hardly avoid comparisons with a publication that inspired it, reader should see The 
Generator not as a continuation of The Icon Analyst; but rather a continuation of its tradition.  

The arrival and spread of the INTERNET in the last decade of the 20th century allows easy and 
simple distribution of our publication without costs for authors and readers. Also, articles can be 
supported with unlimited amount of the source code, graphical or textual output. 

It is our understanding that information, experience or knowledge is too valuable for its 
presentation to be conditional upon its completeness, as is most frequently the case. If a reader uses 
Unicon or Icon for any purpose or in any way previously not described in the literature on these 
programming languages, no matter the level of complexity, The Generator is interested in 
publishing his experiences. 

                                                     

1 All issues of The Icon Analyst and supplementary materials are available, free of charge, at Icon Project WWW site, 
<http://www.cs.arizona.edu/icon/analyst/ia.htm>. 
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GOOD LOOKING CIRCLES. 
KAZIMIR MAJORINC. 

w 
e attempt to draw a simple illustration for a thermodynamics textbook. The molecules in 
fluid are represented with circles of equal size. The circles can touch, but not intersect 
each other. They should be densely positioned, i.e. it should be impossible to draw an 

additional circle without intersecting others. The whole picture should look natural. That condition is 
vague but unavoidable: the picture should not look like it is drawn by human, or by any other, 
unrelated algorithm. Also, the program does not need to be fast; only one good picture need to be 
drawn for the textbook. 

The problem is solved in four attempts; all four are described in this article. A few elements are 
common to all attempts. The record circle and procedure draw_circle are defined; they only make the 
program slightly shorter and simpler. The distance between two circles, d, is defined as in geometry; 
actually, even bit more generally: it is assumed that the distance between intersecting circles is 
negative. 

link random 
link graphics 
global SIZE, R 
record circle(x, y, r) 
procedure d(C1, C2) 
 return sqrt((C1.x-C2.x)^2+(C1.y-C2.y)^2)-C1.r-C2.r  
 end 
  
procedure draw_circle(C) 
 DrawCircle(C.x, C.y, C.r) 
 return C 
 end 
 
procedure eliminate_intersecting(Candidates, c) 
 every insert(ToDelete:=set(), d(c, c0:=!Candidates)<0 & c0 ) 
 return Candidates --:=ToDelete 
 end 
 
procedure main(args) 
 SIZE:=150 
 R:=10 
 every (SIZE|R) := get(args) 
 randomize() 
 attempt1() 
 attempt2() 
 attempt3() 
 attempt4() 
 write("Done")  
 WDone() 
 end 
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As the running time is not important, all algorithms are left in the simplest, unoptimized form. 
After a circle is drawn, in the next step, we form the set Candidates that contains all circles that 
satisfy criteria for a next step. Most importantly, they do not intersect any already drawn circles. One 
of the candidates is randomly chosen and drawn. This process repeats until Candidates is empty. In 
three of four attempts, the Candidates set initially contains all circles that could be drawn in 
quadrant of the given size.  

The First Attempt. 

In the first attempt no additional criteria are imposed. The procedure that draws a random set of 
the non-intersecting circles is short and simple. 

 
procedure attempt1() 
  &window:=WOpen("height="||SIZE, "width="||SIZE, "label=1.", "fg=red") 
  every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R)) 
  while Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates)) 
  end 

 

Some circles are drawn outside of the visible part of the picture, to avoid possible edge effects on 
the picture. 

 
 

This picture is not satisfactory: the circles are not dense enough and the parts left uncovered by 
circles are too big. As all circles are chosen randomly, the program can, theoretically, draw denser 
picture; however, it is not likely to happen in a reasonable number of executions.  

The Second Attempt. 

It was suggested that the program could choose circles that form a perfect quadratic or hexagonal 
pattern, and then slightly translate individual circles in the random direction. Ideally, both higher 
density and randomness can be achieved. 

 

procedure attempt2() 
  distance_between_centers:=(2*R+3) 
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  tolerance:=3  
  &window:=WOpen("height="||SIZE, "width="||SIZE, "label=2.", "fg= dark green")
  every insert ( Candidates:=set(),  
            i:=-2*R to SIZE+2*R &  
            j:=-2*R to SIZE+2*R & 
            (i+100) % distance_between_centers <= tolerance & 
            (j+100) % distance_between_centers <= tolerance & 
            circle(i, j, R) 
           ) 
  while Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates)) 
  end 
 

The algorithm is similar to the previous one. Additionally, an initial choice of the candidates is 
narrowed to the circles with coordinates of the centres in the segments [k(2R+3), k(2R+3)+3], 
k=0, 1, 2 ... We added the constant 100 to avoid aperiodicity of the operation % around zero.  

However, the result of the second attempt is even less satisfactory. 

 

 
 

Although the circles are dense, their distribution is too regular. The square pattern is clearly 
visible, especially if seen from a distance. Variations of the values tolerance and 
distance_between_centers do not help: the pattern can become less obvious only if the density is 
significantly decreased.  

The Third Attempt. 

In the third attempt we applied a similar idea, but more locally. If circles are chosen so they touch 
at least two already drawn circles, then the result is a perfect hexagonal pattern. We expected that, 
using a slightly looser requirement: circles are drawn so they are close to two other circles, density 
can be preserved, while irregularities will accumulate to the degree that hexagonal pattern will not be 
clearly visible in picture. 
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procedure attempt3() 
  min_allowed_d:=0 
  max_allowed_d:=5 
  &window:=WOpen("height="||SIZE, "width="||SIZE, "label=3.", "fg=blue")
  every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R)) 
  Drawn:=[ ] 
  repeat 
  {  Candidates2:=[ ] 
    every c:=!Candidates do  
    {  close_circles:=0 
      every (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)  
      do close_circles+:=1 
      if (close_circles > 1) | (close_circles = *Drawn <= 1)  
      then put(Candidates2, c) 
    } 
    if not(c:=?Candidates2) then fail 
    Candidates:=eliminate_intersecting(Candidates, draw_circle(c)) 
    put(Drawn, c) 
  } 
  end 

 

Our expectations are fulfilled and resulting picture looks significantly better; it is both dense and 
irregular. 

  

Some circles form hexagonal pattern, but it looks more like the natural tendency of the densely 
packed circles than the result of some inadequate algorithm.  

However, as can be seen from the picture, some relatively large empty areas occurred again on 
pictures drawn with attempt3. Although it is not obvious from the above static picture, observation of 
the program during work clearly reveals the origin of such empty spaces.  

The set of the all drawn circles can form figures with large concavities that are bigger than one 
circle. Some of these concavities can not be filled with densely packed circles. 
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See, for example, the picture below: the green circles form a concave figure, and after red circle 
(one in the center if you see this article in monochrome) is drawn, the large area around it can not be 
filled any more. 

 

The Fourth Attempt. 

The problem with the previous attempt can be solved easily. We define the center of the first 
drawn circle as the Center of the whole picture. Beside the previously mentioned criteria, drawn 
circles are chosen to be relatively close (variable tolerance) to the Center. If tolerance is 0, the circle 
closest to the center that does not intersect with other circles is drawn. This ensures that figures 
formed by the circles have no large concavities. 

procedure attempt4() 
  min_allowed_d:=0 
  max_allowed_d:=5 
  tolerance:=5  
  &window:=WOpen("height="||SIZE, "width="||SIZE, "label=4.", "fg=black") 
  every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R)) 
  Drawn:=[ ] 
  repeat  
  {  if /Center  
      then c:=(Center:=?Candidates) 
      else  { Candidates2:=[ ] 
           min_d:=1E5 
           every c:=!Candidates do  
           {  close_circles := 0 
             every (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)  
               do close_circles+:=1 
             if (close_circles > 1) | (close_circles = *Drawn <= 1)  
               then {  put(Candidates2, c) 
                     min_d >:= d(Center, c) 
                   } 
           } 
           every put(Candidates3:=[], (d(Center, c:=!Candidates2)<=min_d+tolerance) & c)
           if not(c:=?Candidates3) then fail 
          } 
    put(Drawn, c) 
    Candidates:=eliminate_intersecting(Candidates, draw_circle(c)) 
  } 
  end 
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Finally, the result satisfied all our criteria; at least sufficiently well for the textbook illustration. 

 

 



THE GENERATOR 
VOL 1. NO 1. 
MARCH MMIV. 

9 

 

FUN WITH CO-EXPRESSIONS, PART ONE. 
STEVE WAMPLER. 

u 
nicon (and Icon) users are likely to be familiar with the role that result sequences play in the 
language1. Result sequence is the term coined to describe the sequence of results that an 
expression is capable of producing during goal-directed evaluation.  For example, the result 

sequence of 1 to 4 is {1, 2, 3, 4}. 

The term is, however, artificial; there is no language entity that is a result sequence.  (Ralph 
Griswold did experiment with a language Seque2 in the late 1980's that did elevate result sequences 
into first class data objects, however.) Expressions simply produce results when evaluated, with the 
ability to provide alternative results when backtracked into during goal-directed evaluation. 

Nevertheless, the idea of result sequences as language objects is appealing.  It's even possible to 
think of expressions as being the language's way of expressing result sequences - the representation 
of a result sequence then becomes the code that is capable of producing it.  Hiroshi Shinohara has 
been experimenting with this in his work on using generators as filters as seen recently on the Unicon 
mailing list. (I'm not sure Hiroshi thinks of his work in quite this fashion, but that's how I see it!) 

The biggest problem one encounters when attempting to work with result sequences as language 
objects is that the representation of any result sequence (i.e. the code) is lexically fixed to the point in 
the program where that code appears. This severely restricts the flexibility of this approach to 
programming. 

There is, however, a way forward. You can't separate a result sequence from the code that 
generates it, but you can capture that code in a co-expression. The effect is one of 'freeing' a result 
sequence from a single lexical location in a program, allowing the manipulation of the result 
sequence, if not as a first class data type in Unicon, at least as a second class data type. I'll call this 
new data entity a Result Sequence, using capitalization to distinguish it from the more general result 
sequences found throughout Unicon code evaluation. 

You can assign the Result Sequence to a variable, pass it to functions and procedures, and include 
it in computations. In short, you can treat it nearly the same as you can other structured data 
entities. (Note the 'nearly' - a Result Sequence is not a list. If you want a list, use a list.)  

No data entity is useful unless the language provides operations for manipulating that data entity 
and Result Sequences are no exception. Certainly the primary Result Sequence operation is goal-
directed evaluation - a key feature in Unicon and Icon that provides much of the expressiveness 
inherent in those languages. By capturing a result sequence as a co-expression, several other 
operations become available for manipulating that Result Sequence. 

First, there is the obvious operation: activation (@). Activation simply produces the next result 
from the sequence and fails if there are no results left. Activation is the foundation for all actions 
involving co-expressions and, hence, is the gateway required to gain access to the result sequence the 
co-expression represents. Most other Result Sequence operations are simply 'normal' Unicon 
operations layered on top of activation. 

                                                     
1 For introduction see Result Sequences, The Icon Analyst, No 7, August 1991, pp. 5-8. [ed.] 
2 For more details see Lost Languages - Seque, The Icon Analyst, No 19, August 1993, pp. 1-4 [ed.] 
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Activation is, by design, not a generating operation. When back-tracked into during goal-directed 
evaluation, no further results are produced, even if the Result Sequence contains additional results. 
One of the first operations that can be layered on top of activation is repeated alternation (unary |), 
which turns any expression into a generating expression. So, the combined operation |@ allows the 
use of a Result Sequence in backtracking contexts. 

What can you do with a Result Sequence that might be hard to do when you're forced to access a 
result sequence at a single lexical place? Lots of things. 

How about producing every other result? If x is a Result Sequence, then: |{@x; @x} does the 
trick. All results after the first n? 

{every |@x\n; |@x} works just fine. 

Want to interleave the results of two expressions? If x and y are Result Sequences for the two 
expressions, then use: |@(x|y). 

Some things are bit trickier, such as producing every nth result from Result Sequence 
x: |{|@x\(n-1) & &fail; @x}. The &fail is needed to force the first subexpression (which is just an 
expression to produce the first n-1 results from a Result Sequence) to generate all of its alternatives 
before moving to the second subexpression. If you find the appearance of & &fail unsettling, as I do, 
you can use Steve Hunter's technique for achieving the same effect: |{\/|@x\(n-1); @x}. (This is 
visually appealing as \/ is reminiscent of the 'for all' operator common to logic systems - though it can 
take a bit of thought to realize just why it works as a replacement for appending & &fail. 
Unfortunately, it's not safe to carry the relationship with logic systems too far, as /\ is not the same 
as 'for any' but rather equivalent to \/!) Perhaps just rewriting the above as |{every |@x\(n-1); @x} 
is the clearest approach.  

All of the above examples are concise and show the expressive power available in Unicon. However, 
they also are perhaps too 'information dense' - the conciseness that authors of such code find 
appealing can make it difficult for others to understand the meaning. For some reason it's 
psychologically unappealing to have to spend so much time grasping the behaviour of so little 
code. So perhaps it's better to spread out the code more, but still make it easy to use by placing such 
operations into procedures. For example, the first example |{@x; @x} can be rewritten as a 
procedure:  

procedure evenResults(x)
 while @x do 
  suspend @x 
end 

This becomes even more useful as the complexity of the operation increases. 

This approach also allows the use of a meaningful name in place of a complex expression and 
allows one to build up a package of useful Result Sequence operations. It might be a good exercise to 
rewrite each of the above expressions as procedures (and no, simply embedding the expression into a 
procedure, as in: 

procedure evenResults(x)
 suspend |{@x; @x} 
end 

doesn't count!). 
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Thinking in terms of operating on sequences of results takes some getting used to, in part because 
there are very few languages that provide the tools to do so. (I once asked a group of people to give 
me a representation for the phrase “the value of x lies between 1 and 10” - the programmers in the 
group [none of whom had seen Icon or Unicon] tended to give '(1 < x) and (x < 10)'. Only a 
mathematician suggested '1 < x < 10'. What the mathematician saw as obvious wasn't obvious to 
people thinking in terms of C or FORTRAN.) Result sequences are a major feature of Unicon and 
using co-expressions to turn result sequences into Result Sequences can be a powerful tool for 
expressing problem solutions. 
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UNIFICATION IN PROPOSITIONAL CALCULUS. 
KAZIMIR MAJORINC 

ropositional calculus is perhaps the simplest and the best known example of a formal 
theory1. The formulas of propositional calculus are either (1) propositional variables (for 
example A, B, C, ...) or (2) constructed from other formulas using unary (~) or binary 

connectives (|, &, >, ...). If infix notation for binary connectives is used, these formulas are similar to 
the usual algebraic formulas: for example (~A), (A>B), (A>(~(A>B))) are formulas, while 
A~B>B is not.  

p 

Somehow, surprisingly, a standard set of axioms for propositional calculus has not been 
established; one can hardly find two books that use identical sets of axioms.  

There is more agreement about rules of inference. Two of the most frequently used rules are (1) 
substitution: if F is a theorem, X1, ..., Xn are some of the variables occurring in F and G1, ..., Gn are 
formulas without occurrences of X1, ..., Xn then the formula F' obtained from F by simultaneous 
substitution of all occurrences of X1, ..., Xn with G1, ..., Gn respectively is also the theorem and (2) 
modus ponens: if formulas (F>G) and F are theorems, then G is also theorem. Additional rules of 
inference are not necessary. Axioms are, by definition, also theorems of propositional calculus.  

A logician usually defines propositional calculus syntactically, because syntax is finite and even - 
visible, and as such it raises less doubts than any semantics2. However, the usual intention is to 
finally add semantics to the defined syntax. Typically, variables are interpreted as statements of the 
natural language (including mathematical extensions) and connectives ~, |, & and > as logical 
operators “not”, “or”, “and” and “implies” respectively. With proper choices of axioms and inference 
rules, propositional calculus is complete, i.e. all tautologies (i.e. statements that are true no matter 
which natural language statements are represented by variables) and only tautologies are theorems of 
propositional calculus. 

Although the tautology concept might seem trivial and useless, it is not. For example, if we know 
that (F1>F2) is a tautology, we also know that F2 is true whenever F1 is true; certainly, such a 
conclusion is not trivial for every possible interpretation of F1 and F2 in natural language. 

Definition of the propositional calculus is constructive; in principle, one can make a program that 
derives all theorems of propositional calculus. However, after half a century of research, computers 
have only established a marginal role in the development of the mathematical knowledge. 
Furthermore, difficulties in designing programs that match human capabilities in games such as 
chess, or especially go are not encouraging as it is probable that mathematics is more complicated 
than these games.  

                                                     
1 Any introductory text in mathematical logic will contain an extensive survey of important results, for example any 

edition of E. Mendelson, INTRODUCTION TO MATHEMATICAL LOGIC.  
2 For example, some logicians do not accept that double negation implies affirmation. They, however, find formula as 

((~(~A))>A) acceptable if it is defined as string of characters, without meaning. 
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Theorems, as found in books are both true and interesting mathematical statements. In attempts 
to automate their derivation1, two general approaches are used. In the first approach, one starts from 
an interesting statement and tries to determine whether it is true. In the second approach, one starts 
from statements known to be true and tries to find interesting consequences. These two approaches 
are called automated theorem proving and automated theorem finding2 (far less researched with 
exception of the works of S. N. Vassilyev3.) 

In practice, the problem with automated theorem finding is always the same: naive algorithms for 
deriving tautologies generate many obviously trivial, weak or other less than interesting theorems. If 
interesting theorems are derived at all, it is not known how they could be identified and isolated from 
myriads of others also generated in the process.  

For example, substitution can be applied to any formula and infinitely many formulas can be 
derived from it. Unfortunately, all these derived formulas are longer and weaker than the premise. 
These are weaker in the usual mathematical sense that can be easily recognized but is hard to 
formalize.  

Modus ponens is different: the consequence is shorter and stronger than the longer one of the two 
premises. Unfortunately, modus ponens can rarely be applied; almost certainly it cannot be applied 
on two randomly chosen theorems of propositional calculus.  

This difference suggests that integration of these two rules in some combined rule can both reduce 
combinatorial explosion caused by substitution and increase the frequency of successful application of 
modus ponens in the process of the development of propositional formulas. One possible combined 
rule is (3) for two theorems F and (G>H), if there are substitutions s and t such that s(F)=t(G) then 
t(H) is also a theorem. 

The combined rule is not trivial any more. The essential part of the problem is determining 
whether for given formulas F and G there exist substitutions s and t such that s(F)=t(G). That 
problem also occurs in other contexts and the commonly used name for it is unification4 of formulas. 

An algorithm for unification of two propositional formulas is easily implemented in a Unicon 
program of about hundred and fifty lines.  

link strings 
link sets 
 
$define NL "\n" 
$define LINE repl("=", 20) 
$define TRUE 1 

                                                     
1 Good survey article is M. Beeson, THE MECHANIZATION OF MATHEMATICS in C. Teuscher, (ed.) Alan Turing: Life and 

Legacy of a Great Thinker, Springer-Verlag, Berlin, 2003.  
2 L. Wos, THE PROBLEM OF AUTOMATED THEOREM FINDING. Journal of Automated Reasoning, Vol. 10(1), 1993, pp. 

137-8. 
3 Probably the best review of his work is S. N. Vassilyev, MACHINE SYNTHESIS OF MATHEMATICAL THEOREMS, Journal 

of Logic Programming, Vol 9, 1990, pp. 235-66.  
4 Extensive review can be found in F. Baader, W. Snyder, UNIFICATION THEORY, Chapter 8, pp. 439-526 in A. 

Robinson, A. Voronkov (ed.), Handbook of Automated Deduction, Elsevier/MIT Press, 2001.  



THE GENERATOR 
VOL 1. NO 1. 
MARCH MMIV. 

15 

 

$define FALSE 0 
$define xxxxxx1 ( 
$define init_to :=:temp_init_to):=(if \temp_init_to then temp_init_to else 
$define xxxxxx2 ) 
 
procedure main() 
  every k:=1 to 4 do  
  { F:= [  ["(A>((B>(C>B))>D))", "((a>(b>c))>((a>b)>(a>c)))"],  
      ["(A>(~A))", "((~B)>B)"],  
      ["(A>(~B))", "(B>(~A))"],  
      ["(A>(~B))", "(B>(~A))"]  
     ][k] 
   Fca:=[[TRUE, TRUE], [TRUE, TRUE], [TRUE, FALSE], [TRUE, TRUE]][k]
   write(LINE, NL, "Unification of: ") 
   every i:=idx(F) do write(F[i], ", changes allowed: ", Fca[i]) 
   write("Unification succeeded: ", unified( F, Fca ).formula) 
  } 
 end 

The program links to standard libraries "strings" and "sets." A few simple macros are 
defined. Only the infix macro operator init_to deserves some comment. The expression (( x init_to 
expr )) is equivalent to longer expressions like {/x:=expr; x} or {if /x then x:=expr else x} that allow 
initialization of variables in the same place they are used in loops. The macro init_to is usually slower 
than initialization outside of the loop. In some expressions, like every ((x init_to 0))+:=1 to n, one 
can replace ((x init_to 0)) with simple (x:=0). Also, one execution of the macro in some procedure 
must be completed before another execution is started. Hence, nested expressions like ((x init_to ((y 
init_to 0)))) do not work correctly.1 However, we believe that replacement of the frequently occurring 
idioms or patterns in the programs with simple, non-redundant syntactical constructs reveals the 
logic of the programming itself, so the price appears to be acceptable.2  

The seemingly strange macros xxxxxx1 and xxxxxx2 have only one role: to balance the parenthesis 
left open by init_to and prevent errors in text editors with integrated parentheses matching; the 
definition of the macro init_to uses parentheses in an unusual way; for an excellent example see N. 
Hodgons's SciTE3. 

                                                     
1 It seems to be one of the most frequent problems with macros.  
2 C. Evans implemented a more powerful macro system and special syntax (x :$ expr) for {/x:=expr; x} in his private 

build of Unicon. 
3 <http://www.scintilla.org/SciTE.html>. 
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For testing and demonstration purposes, four pairs of formulas are stored in the list F and passed 
as an argument to the procedure unified. That procedure returns a record consisting of (1) the 
formula resulting from unification and (2) a list of all performed substitutions. 

The procedure unified accepts another argument, Fca, a list of Boolean values. For clarity of 
intention the macros FALSE and TRUE are used respectively. In this implementation of unified, 
only formulas F[i] such that Fca[i]=TRUE can be changed. If unification succeeds and Fca[i] was 
FALSE, then F[i] can be obtained from F[3-i] by substitution. Less formally, F[i] is a special and 
weaker case of F[3-i]. 

Some procedures used in the program can be useful in a more general context. They are copied 
from other programs or generalized and extracted elements of the early working versions of this 
program. 

 

procedure is_true(B) 
 if B==TRUE then return TRUE 
 end 
  
procedure card(predicate, X) 
 every ((result init_to 0))+:=( predicate(!X) & 1 )  
 return result 
 end 
  
procedure card_nulls(X) 
 every ((result init_to 0)) +:= ((/!X) & 1 ) 
 return result 
 end 
 
procedure card_columns(LL)  
 every ((result init_to *?LL)) <:= *!LL 
 return result 
 end 
  
procedure idx(L)  
 suspend 1 to *L 
 end 
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procedure jdx(LL)  
 suspend 1 to card_columns(LL) 
 end 
 
procedure column(LL, j)  
 if /j then suspend column(LL, jdx(LL))  
    else  {  every L:=!LL do 
          put( ((C init_to [])) , if j <= *L then L[j] else &null) 
          return C 
        } 
 end 
 
procedure projection(XX, index) 
 if type(XX)=="list"  
  then {  result:=[]; 
         every X:=!XX do put(result, X[index]) 
         return result 
       } 
 end  
 
procedure is_simple_type(x) 
 if type(x)==("real"|"integer"|"string") then return x 
 end 
 
procedure generalized_application(p, L) 
 every put(result:=[], p(!L)) 
 return result 
 end 
  
procedure equal_by_value(X) 
 if not different_by_value(X) then return X 
 end 
  
procedure different_by_value(L) 
 S:=set(L) 
 if member(S, "&equal") & member(S, "&different")  
   then error("Ambivalent different/equal_by_value.") 
 if member(S, "&equal") then fail  
 if member(S, "&different") then return L 
  case card_nulls(L) of { 1: return L; 2: fail } 
  return case card(is_simple_type, L) of  
  {  1: L 
    2: if L[1] ~== L[2] then L else &fail 
    0: if different_by_value(column(L)) then L else &fail 
  } 
 end 
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The predicates is_true and is_false allow convenient combination of Boolean and success/ failure 
program control flow.  

The generator jdx(LL) accepts a list of lists as an argument; if understood as two-dimensional 
array, jdx generates indexes of its columns. The procedure column(LL, j) returns j-th column of such 
an array, i.e. list [LL[1][j], ..., LL[*LL][j]]; if the second argument is omitted, it generates all 
columns of LL. Expressions symmetrical to jdx(LL), column(LL, j) and column(LL) are 1 to *L, 
LL[j] and !LL respectively. Syntactical symmetry can be achieved by implementation of procedures 
idx(LL)1 and row(LL, j).  

The procedure projection(X, index) is a generalization of the procedure column(LL, j); it accepts a 
list of tables as an argument and index can be any key in the table. Further generalization can be 
useful. 

The procedure generalized_application(p, L) returns the list [p(L[1]), ..., p(L[*L])]. It is similar 
to R. Griswold's apply in the Icon Program Library, file "apply.icn". Further generalization can 
be useful.  

A few procedures with names containing the prefix card2 count elements of the structures 
satisfying given criteria. 

Unicon's built in operator === and its negation ~=== compare equality of the two structures 
“by reference.” Although there are few similarities with set-theoretical equality, === does not satisfy 
the axiom of extensionality3. For example, {1, 2}={1, 2} is true in set theory, while its Unicon 
equivalent set([1, 2]) === set([1, 2]) does not necessarily succeed4. 

Design and implementation of a relation more similar to set theory equality has been addressed in 
the past5. 

The procedures different_by_value and equal_by_value presented here are more limited than J. P. 
de Ruiter's procedure. However, they have one useful additional property. Pseudo- keywords 
"&equal" and "&different", are defined as equal_by_value and different_by_value to any value. 
Comparison between "&equal" and "&different" is not defined and will result, in a runtime 
error if attempted.  

procedure is_variable(F) 
 if find(F, &letters) then return F 
 end  
 
record character_index_level_type(character, index, level) 
procedure character_index_level(F) 
 suspend character_index_level_type( 

                                                     
1 The function key is equivalent to idx.  
2 The name of the procedure is inspired by the set-theoretical concept of the cardinal number. 

3 Sets are uniquely defined by their members, i.e. (∀x)(∀y)(((∀z)( z∈x ↔ z∈y)) ↔ (x=y)) 
4 Actually, set([1, 2]) === set([1, 2]) never succeeds in Unicon. 
5 R. Griswold's procedure equiv (equiv.icn, I.P.L.) and J. P. de Ruiter's procedure same_value (mset.icn, 

I.P.L.) should be mentioned. 
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   cF:=!F,  
   ((i init_to 0)) +:= 1,  
   ((lev init_to 0)) +:= case cF of { "(": 1; ")": -1; default: 0} 
   ) 
 end 
 
procedure main_connective(F)  
 return equal_by_value([ character_index_level(F), ["~"|">", "&equal", 1]])[1] 
 end 
 
procedure analysed_formula(F) 
 T:=table() 
 if is_variable(F)  
  then T ["variable"]:=F  
  else { m:=main_connective(F)  
     T ["connective"]:=m.character  
     T ["left"]:=F[2:m.index]  
     T ["right"]:=F[m.index + 1: -1] 
    } 
 return T 
end 

The predicate is_variable allows all lowercase and uppercase letters as propositional variables. 

The procedure character_index_level(F) generates records containing successive individual 
characters of the formula F, the position index of the character in the formula and the number of 
opened and unclosed parentheses before that position. Note that suspend, aside from its primary role, 
resumes all generators like every. 

Perhaps the most elegant procedure in the whole program, main_connective(F) returns a 
connective ("~" or ">") enclosed in exactly one pair of parenthesis in the formula F and its position in 
that formula. 

The procedure analysed_formula accepts a formula as an argument and returns a table containing 
the main connective and both the left and right subformulas of a given formula. If the main 
connective is unary, i.e. "~", the left subformula is by the definition empty string. 

Finally, we approach the most specific parts of the program. 

record substitution(variable, formula)  
 
procedure forced_substitution(F, Fca) 
 if is_variable(!F)  
  then if i:=idx(F) & is_variable(F[i]) & is_true(Fca[i])  
    then return substitution(F[i], F[3-i] )  
    else  { write( "No substitution: formulas differ in variable "|| 
             "but substitution is not allowed.") 
         fail 
        } 
 AF:=generalized_application(analysed_formula, F) 
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 "~==" !( D:=projection(AF, j:=!["connective", "left", "right"]))  
 if j=="connective"  
  then write("No substitution: different main connectives.") 
  else return forced_substitution(D, Fca)  
 end 
  
procedure substitute(F, Fca, s) 
 every is_true(Fca[i:=idx(F)])  
   do F[i]:=replace(F[i], s.variable, s.formula) 
 if find(s.variable, !F)  
  then write("Substitution failed: ", s.variable, " cannot be eliminated.")
  else return s 
 end 
  
record unified_type(formula, substitution) 
 
procedure unified(F, Fca) 
 while different_by_value( F ) do  
  if not( s:=forced_substitution(F, Fca) &  
     write( LINE, NL, "Substitution ", s.formula,  
          " for ", s.variable, " suggested."  
         ) & 
     substitute(F, Fca, s) & 
     write("Substitution succeeded.", NL, F[1], NL, F[2]) & 
     put( ((applied_substitutions init_to [])), s) 
    )  
  then fail 
 return unified_type(?F, applied_substitutions) 
 end 

The procedure unified contains a loop that is repeated as long as formulas F[1] and F[2] are 
different. In the loop two elementary operations are performed, (1) searching for substitutions that 
need to be performed and (2) performing the substitutions. If any of these two fail, unification also 
fails. Those two operations are delegated to the procedures forced_substitution and substitute. 

The prefix “forced” in forced_substitution suggests that a found substitution has to be applied; 
otherwise, it would be impossible to unify two formulas. The forced_substitution first searches for the 
difference between two formulas, translating them into the form of a tree 'on the fly' and then tries to 
match these trees. There are a few different cases, dependent on the difference between formulas 
F[1] and F[2]. 

In the simplest case exactly one of the formulas is a propositional variable; let us denote it with 
F[i]. If changing F[i] is allowed then substitution of F[3-i] for F[i] is necessary for unification. If 
changes to the formula F[i] are not allowed, then F[1] and F[2] cannot be unified.  

If both formulas are variables, then either of the substitutions F[1] for F[2] or F[2] for F[1] can 
be chosen. 

If neither one of the formulas in F is variable and they differ in the main connective then no 
substitution can unify them. 
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Finally, if both formulas in F are complex, (i.e. not variables) and have the same main connectives 
and differ in at least one of the corresponding subformulas then further searching is performed 
recursively. 

Once found, substitution can be performed easily. The procedure replace from "strings.icn" 
in the Icon Program Library can be used for formulas in the form of the string.  

Under some circumstances substitution fails, i.e. when a substituted variable still occurs in some 
part of the formula F. This can happen if (1) the formula to be substituted for a variable contains the 
same variable1; for example, if (~B) is substituted for B; or (2) when a substituted variable occurs in 
a formula where changes are not allowed. If substitution fails, again, unification of the formulas is 
impossible. 

After the formulas are unified it does not matter which one is returned as result of the unification; 
so a random choice is returned. Output produced by the program is relatively readable.  

==================== 
Unification of:  
(A>((B>(C>B))>D)), changes allowed: 1 
((a>(b>c))>((a>b)>(a>c))), changes allowed: 1 
==================== 
Substitution (a>(b>c)) for A suggested. 
Substitution succeeded. 
((a>(b>c))>((B>(C>B))>D)) 
((a>(b>c))>((a>b)>(a>c))) 
==================== 
Substitution a for B suggested. 
Substitution succeeded. 
((a>(b>c))>((a>(C>a))>D)) 
((a>(b>c))>((a>b)>(a>c))) 
==================== 
Substitution (C>a) for b suggested. 
Substitution succeeded. 
((a>((C>a)>c))>((a>(C>a))>D)) 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
==================== 
Substitution (a>c) for D suggested. 
Substitution succeeded. 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
Unification succeeded: ((a>((C>a)>c))>((a>(C>a))>(a>c))) 
==================== 
Unification of:  
(A>(~A)), changes allowed: 1 
((~B)>B), changes allowed: 1 

                                                     
1 The occur-check test is frequently discussed in the context of Prolog. Most implementations do not perform 

occur-check. 
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==================== 
Substitution (~B) for A suggested. 
Substitution succeeded. 
((~B)>(~(~B))) 
((~B)>B) 
==================== 
Substitution (~(~B)) for B suggested. 
Substitution failed: B cannot be eliminated. 
==================== 
Unification of:  
(A>(~B)), changes allowed: 1 
(B>(~A)), changes allowed: 0 
==================== 
Substitution B for A suggested. 
Substitution failed: A cannot be eliminated. 
==================== 
Unification of:  
(A>(~B)), changes allowed: 1 
(B>(~A)), changes allowed: 1 
==================== 
Substitution B for A suggested. 
Substitution succeeded. 
(B>(~B)) 
(B>(~B)) 
Unification succeeded: (B>(~B))  

For some pairs of formulas, for example (B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))) and 
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), unification requires exponential running time. 

==================== 
(B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))), changes allowed: 
1 
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), changes 
allowed: 1 
==================== 
Substitution (A>A) for B suggested. 
Substitution succeeded. 
((A>A)>(C>(D>((a>a)>((b>b)>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((C>C)>(b>(c>(d>D)))))) 
==================== 
Substitution ((A>A)>(A>A)) for C suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>(D>((a>a)>((b>b)>((c>c)>d)))
))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>D)))))) 
==================== 
Substitution (((A>A)>(A>A))>((A>A)>(A>A))) for D 
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suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>((b>b)>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
==================== 
Substitution (a>a) for b suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A)))))
)))) 
==================== 
Substitution ((a>a)>(a>a)) for c suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>(d>(((A>A)>(A>A))>((A
>A)>(A>A))))))))) 
==================== 
Substitution (((a>a)>(a>a))>((a>a)>(a>a))) for d suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((a>a)>(a>a))>((a>a)>(a>a))))))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
==================== 
Substitution A for a suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
Unification succeeded: 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 

The resulting formula is exponentially longer than the input of the program. Hence, improvement 
of the algorithm is not possible without redefinition of the propositional calculus. This important 
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negative result is, however, not completely surprising. Similar inefficiencies are observed in the 
related fields of propositional calculus, and relative improvements are achieved through introduction 
of the equality in language or equivalent use of alternative data structures1. That idea is, also, 
fruitfully applied on the unification problem.2 

                                                     
1 The most important examples are described in G. S. Tseitin, ON THE COMPLEXITY OF DERIVATION IN PROPOSITIONAL 

CALCULUS, in Studies in Constructive Mathematics and Mathematical Logic, Part 2. Consultant Bureau, New York 1968, 
pp. 115-25. and S. A. Cook and R. A. Rechkow, THE RELATIVE EFFICIENCY OF PROPOSITIONAL PROOF SYSTEMS. Journal of 
Symbolic Logic 44 (1979), pp. 36-50. We addressed similar problem in K Majorinc, EXTENSION RULE FOR NON-CLAUSAL 

PROPOSITIONAL CALCULUS, Fundamenta Informaticae, Vol 31, No 2, August 1997, pp. 107-16. 
2 Few quadratic and linear time algorithms for unification in more general sense are reported. Perhaps the best known 

one is described by A. Martelli and U Montanari in AN EFFICIENT UNIFICATION ALGORITHM, ACM Transactions on 
Programming Languages and Systems 4(2), 1982, pp. 258-82. 
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FROM MAILING LIST ARCHIVES. 

con's mailing list archive contains lots of interesting ideas, notes and programs. However, its 
huge size of about 10 000 pages, Spartan format, and unavoidable redundancies might 
discourage many - if not the majority - of Unicon users from the study of that valuable 

resource. In the following issues of The Generator we'll republish selected posts or their excerpts 
that, we believe, deserve to be more readily available to Unicon users.  

i 
In this issue, G. Yee's implementation of mathematical functions from 1986 is presented. Note 

that functions fail (instead of producing runtime error) if argument is not in the domain of definition, 
e.g. sqr(-1), log(-1) etc. All procedures except floor(x) and ceil(x) have been incorporated into Unicon 
and Icon as functions. Functions atan2(y, x) and atan(x) have been coalesced into atan(r1, r2) while 
log(x) and log10(x) have been coalesced into log(x, b). 

YEE'S MATHEMATICAL PROCEDURES. 
From ralph  Sat Mar 15 08:42:07 1986 
From: “Ralph Griswold” <ralph> 
Subject: math procedures 

George Yee, a graduate student in the DEPARTMENT OF COMPUTER SCIENCE at the UNIVERSITY 
OF ARIZONA, has written a package of math procedures in Icon. A UNIX-style manual page and the 
source code for these procedures follow: 

-------------------------------------------------------------------- 
MATH(3.icon)          Icon Program Library           MATH(3.icon) 
NAME 
     sin, cos, tan, asin, acos, atan, atan2 - trigonometric func- 
     tions and their inverses 
SYNOPSIS 
     link "math" 
     sin(x) 
     cos(x) 
     tan(x) 
     asin(x) 
     acos(x) 
     atan(x) 
     atan2(y, x) 
     dtor(deg) 
     rtod(rad) 
DESCRIPTION 
     Sin, cos and tan return trigonometric functions of radian 
     arguments x. 
     Asin returns the arc sine in the range -pi/2 to pi/2. 
     Acos returns the arc cosine in the range 0 to pi. 
     Atan returns the arc tangent in the range -pi/2 to pi/2. 
     Atan2(y, x) :=  atan(y/x)                   if x > 0,  
                     sign(y)*(pi - atan(|y/x|))  if x < 0,  
                     0                           if x = y = 0, or 
                     sign(y)*pi/2                if x = 0 ~= y. 
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     Dtor converts degrees to radians, while rtod converts radi- 
     ans to degrees. 
DIAGNOSTICS 
     If |x| > 1 then asin(x) and acos(x) will fail. 
MATH(3.icon)          Icon Program Library           MATH(3.icon) 
NAME 
     sqrt - square root 
SYNOPSIS 
     link "math" 
     sqrt(x) 
DESCRIPTION 
     Sqrt(x) returns the square root of x. 
DIAGNOSTICS 
     Sqrt(negative) fails to produce a result. 
MATH(3.icon)          Icon Program Library           MATH(3.icon) 
NAME 
     exp, log, log10 - exponential and logarithm 
SYNOPSIS 
     link "math" 
     exp(x) 
     log(x) 
     log10(x) 
DESCRIPTION 
     Exp returns the exponential function of x. 
     Log returns the natural logarithm of x. 
     Log10 returns the logarithm of x to base 10. 
DIAGNOSTICS 
     Log(negative) and log10(negative) fail to produce a result. 
MATH(3.icon)          Icon Program Library           MATH(3.icon) 
NAME 
     floor, ceil - floor and ceiling 
SYNOPSIS 
     link "math" 
     floor(x) 
     ceil(x) 
DESCRIPTION 
     Floor returns the largest integer no greater than x. 
     Ceil returns the smallest integer no less than x. 
-------------------------------------------------------------------- 

# math.icn - mathematical procedures for Icon programming language 
# 
#    Version 1.0  created on 10 February 1986. 
# 
#    Procedures developed in Icon by  George D. Yee 
#                                   1847 N. Frances Blvd. 
#                                   Tucson, AZ  85712 
# 
#    Free distribution and use of this material is granted provided the 
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#    above credit is left intact on all source copies.  No warranties 
#    are made as to the correctness or suitability of these procedures 
#    for any purpose.  Please send any suggestions to me at the above 
#    address. 
# 
procedure sin(x) 
   return _sinus(numeric(x), 0) 
end 
procedure cos(x) 
   return _sinus(abs(numeric(x)), 1) 
end 
procedure tan(x) 
   return sin(x) / (0.0 ~= cos(x)) 
end 
 
# atan returns the value of the arctangent of its 
# argument in the range [-pi/2, pi/2]. 
procedure atan(x) 
   if numeric(x) then 
      return if x > 0.0 then _satan(x) else -_satan(-x) 
end 
# atan2 returns the arctangent of y/x 
# in the range [-pi, pi]. 
procedure atan2(y, x) 
   local r 
   static pi 
   initial pi := 3.141592653589793238462643 
   return if numeric(y) & numeric(x) then { 
      if x > 0.0 then 
         atan(y/x) 
      else if x < 0.0 then { 
         r := pi - atan(abs(y/x)) 
         if y >= 0.0 then r else -r 
         } 
      else if x = y = 0.0 then 
         0.0         # special value if both x and y are zero 
      else 
         if y >= 0.0 then pi/2.0 else -pi/2.0 
      } 
end 
procedure asin(x) 
   if abs(numeric(x)) <= 1.0 then 
      return atan2(x, (1.0-(x^2))^0.5) 
end 
procedure acos(x) 
   return 1.570796326794896619231e0 - asin(x) 
end 
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procedure dtor(deg) 
   return numeric(deg)/57.29577951308232 
end 
procedure rtod(rad) 
   return numeric(rad)*57.29577951308232 
end 
procedure sqrt(x) 
    return (0.0 <= numeric(x)) ^ 0.5 
end 
procedure floor(x) 
   return if numeric(x) then 
      if x>=0.0 | real(x)=integer(x) then integer(x) else -integer(-x+1) 
end 
procedure ceil(x) 
   return -floor(-numeric(x)) 
end 
procedure log(x) 
   local z, zsq, ex 
   static log2, sqrto2, p0, p1, p2, p3, q0, q1, q2 
   initial { 
      # The coefficients are #2705 from Hart & Cheney. (19.38D) 
      log2   :=  0.693147180559945309e0 
      sqrto2 :=  0.707106781186547524e0 
      p0     := -0.240139179559210510e2 
      p1     :=  0.309572928215376501e2 
      p2     := -0.963769093368686593e1 
      p3     :=  0.421087371217979714e0 
      q0     := -0.120069589779605255e2 
      q1     :=  0.194809660700889731e2 
      q2     := -0.891110902798312337e1 
      } 
   if numeric(x) > 0.0 then { 
      ex := 0 
      while x >= 1.0 do { 
         x /:= 2.0 
         ex +:= 1 
         } 
      while x < 0.5 do { 
         x *:= 2.0 
         ex -:= 1 
         } 
      if x < sqrto2 then { 
         x *:= 2.0 
         ex -:= 1 
         } 
      return ((((p3*(zsq:=(z:=(x-1.0)/(x+1.0))^2)+p2)*zsq+p1)*zsq+p0)/ 
             (((1.0*zsq+q2)*zsq+q1)*zsq+q0))*z+ex*log2 
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      } 
end 
procedure exp(x) 
   return 2.718281828459045235360287 ^ numeric(x) 
end 
procedure log10(x) 
   return log(x)/2.30258509299404568402 
end 
procedure _sinus(x, quad) 
   local ysq, y, k 
   static twoopi, p0, p1, p2, p3, p4, q0, q1, q2, q3 
   initial { 
      # Coefficients are #3370 from Hart & Cheney (18.80D). 
      twoopi :=  0.63661977236758134308 
      p0     :=  0.1357884097877375669092680e8 
      p1     := -0.4942908100902844161158627e7 
      p2     :=  0.4401030535375266501944918e6 
      p3     := -0.1384727249982452873054457e5 
      p4     :=  0.1459688406665768722226959e3 
      q0     :=  0.8644558652922534429915149e7 
      q1     :=  0.4081792252343299749395779e6 
      q2     :=  0.9463096101538208180571257e4 
      q3     :=  0.1326534908786136358911494e3 
      } 
   if x < 0.0 then { 
      x := -x 
      quad +:= 2 
      } 
   y := (x *:= twoopi) - (k := integer(x)) 
   if (quad := (quad + k) % 4) = (1|3) then 
      y := 1.0 - y 
   if quad > 1 then 
      y := -y 
   return (((((p4*(ysq:=y^2)+p3)*ysq+p2)*ysq+p1)*ysq+p0)*y) / 
           ((((ysq+q3)*ysq+q2)*ysq+q1)*ysq+q0) 
end 
procedure _satan(x) 
   static sq2p1, sq2m1, pio2, pio4 
   initial { 
      sq2p1 := 2.414213562373095048802e0 
      sq2m1 := 0.414213562373095048802e0 
      pio2  := 1.570796326794896619231e0 
      pio4  := 0.785398163397448309615e0 
      } 
   return if x < sq2m1 then 
             _xatan(x) 
          else if x > sq2p1 then 
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             pio2 - _xatan(1.0/x) 
          else 
             pio4 + _xatan((x-1.0)/(x+1.0)) 
end 
procedure _xatan(x) 
   local xsq 
   static p4, p3, p2, p1, p0, q4, q3, q2, q1, q0 
   initial { 
      # coefficients are #5077 from Hart & Cheney. (19.56D) 
      p4    := 0.161536412982230228262e2 
      p3    := 0.26842548195503973794141e3 
      p2    := 0.11530293515404850115428136e4 
      p1    := 0.178040631643319697105464587e4 
      p0    := 0.89678597403663861959987488e3 
      q4    := 0.5895697050844462222791e2 
      q3    := 0.536265374031215315104235e3 
      q2    := 0.16667838148816337184521798e4 
      q1    := 0.207933497444540981287275926e4 
      q0    := 0.89678597403663861962481162e3 
      } 
   return x * ((((p4*(xsq:=x^2)+p3)*xsq+p2)*xsq+p1)*xsq+p0) / 
          (((((xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0)  
end 
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