

The
Generator.

IN THIS ISSUE:

L a u n c h i n g T h e G e n e r a t o r . 1
G o o d L o o k i n g C i r c l e s (w i t h f i v e i l l u s t r a t i o n s i n c o l o r .) 3
F u n W i t h C o - e x p r e s s i o n s . 9
U n i f i c a t i o n i n P r o p o s i t i o n a l C a l c u l u s . 13
Y e e ' s M a t h e m a t i c a l P r o c e d u r e s . 25

“I KNOW WHAT I HAVE WITNESSED. NOW IT IS YOUR TURN.
PREPARE YOURSELF FOR A JOURNEY INTO A WORLD WHERE
EACH NEW STEP MAY GIVE YOU A BETTER UNDERSTANDING

OF YOUR OWN REALITY."

VOL 1. NO 1.

MARCH MMIV.

STATEMENT OF PURPOSE.

The Generator is an international, non-for-profit journal devoted to the use of the Unicon
programming language and its predecessor and subset, the Icon programming language. The

Generator can be freely redistributed in its complete and unchanged form.

PRINTING INSTRUCTIONS.
The Generator is designed to be printed on the both sides of the paper. It is published in two

standard formats, A4 and Letter. In some circumstances, use of the printing options Auto-rotate and
Center and Fit to paper might be appropriate.

CALL FOR PAPERS.
The Generator publishes wide range of articles: papers, reviews, notes, reports etc. All articles
contain some amount of the previously unpublished material; an exception is material previously

published on less formal ways (preprints, mailing list and newsgroups posts etc.)
No particular article style is preferred.

All submitted articles are reviewed.
The author permits unlimited publishing of the submitted article in The Generator.

Copyright of the articles is not transferred to The Generator.

EDITORIAL BOARD.
David Gamey, Toronto, Canada, <David Gamey at rogers com>.

Clint Jeffery, Las Cruces, New Mexico, USA, <jeffery at cs nmsu edu>, substantive editor.
Frank J. Lhota, Waltham, Massachusetts, USA, <lhota adarose at verizon net>.

Kazimir Majorinc, Zagreb, Croatia, <Kazimir at chem pmf hr >, editor.
William H. Mitchell, Tucson, Arizona, USA, <whm at mse com>.

Steve Wampler, <sbw at tapestry tucson az us>.
 [E-mail addresses follow usual syntax.]

TYPESETTING.
Typesetting is done by authors, reviewers and the publisher of The Generator.

The illustrations: Monsters of Stone, Omega Font Labs,
<http://www.moorstation.org/typoasis/designers/omega/omega.htm> and DBL Corners, House of

Lime, <http://www.houseoflime.com>.
The fonts: Weatherly Systems Inc. Ramona, Bitstream De Vinne and Pica10 and Corel

Frankenstein.

PUBLISHER.
Kazimir Majorinc, Drvinje 20, Zagreb, Croatia.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

1

Finally, we want to thank all who worked or contributed to the Icon and Unicon projects, led by R.
Griswold and later by G. Townsend, and C. Jeffery, respectively, and to all that contributed to the
tradition of these two programming languages outside of the mentioned projects.

LAUNCHING THE GENERATOR.

 t
his is the first issue of The Generator, a journal devoted to the use of the Unicon
programming language and its predecessor and subset, the Icon programming language. The
Generator is inspired by The Icon Analyst, a publication edited by Madge and Ralph

Griswold and Gregg Townsend from 1990 to 2001. We can thank them for the excellent publication
they produced1, and hope that we'll see some their contributions in years to come. Although The
Generator can hardly avoid comparisons with a publication that inspired it, reader should see The
Generator not as a continuation of The Icon Analyst; but rather a continuation of its tradition.

The arrival and spread of the INTERNET in the last decade of the 20th century allows easy and
simple distribution of our publication without costs for authors and readers. Also, articles can be
supported with unlimited amount of the source code, graphical or textual output.

It is our understanding that information, experience or knowledge is too valuable for its
presentation to be conditional upon its completeness, as is most frequently the case. If a reader uses
Unicon or Icon for any purpose or in any way previously not described in the literature on these
programming languages, no matter the level of complexity, The Generator is interested in
publishing his experiences.

1 All issues of The Icon Analyst and supplementary materials are available, free of charge, at Icon Project WWW site,
<http://www.cs.arizona.edu/icon/analyst/ia.htm>.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

2

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

3

GOOD LOOKING CIRCLES.
KAZIMIR MAJORINC.

w
e attempt to draw a simple illustration for a thermodynamics textbook. The molecules in
fluid are represented with circles of equal size. The circles can touch, but not intersect
each other. They should be densely positioned, i.e. it should be impossible to draw an

additional circle without intersecting others. The whole picture should look natural. That condition is
vague but unavoidable: the picture should not look like it is drawn by human, or by any other,
unrelated algorithm. Also, the program does not need to be fast; only one good picture need to be
drawn for the textbook.

The problem is solved in four attempts; all four are described in this article. A few elements are
common to all attempts. The record circle and procedure draw_circle are defined; they only make the
program slightly shorter and simpler. The distance between two circles, d, is defined as in geometry;
actually, even bit more generally: it is assumed that the distance between intersecting circles is
negative.

link random
link graphics
global SIZE, R
record circle(x, y, r)
procedure d(C1, C2)
 return sqrt((C1.x-C2.x)^2+(C1.y-C2.y)^2)-C1.r-C2.r
 end

procedure draw_circle(C)
 DrawCircle(C.x, C.y, C.r)
 return C
 end

procedure eliminate_intersecting(Candidates, c)
 every insert(ToDelete:=set(), d(c, c0:=!Candidates)<0 & c0)
 return Candidates --:=ToDelete
 end

procedure main(args)
 SIZE:=150
 R:=10
 every (SIZE|R) := get(args)
 randomize()
 attempt1()
 attempt2()
 attempt3()
 attempt4()
 write("Done")
 WDone()
 end

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

4

As the running time is not important, all algorithms are left in the simplest, unoptimized form.
After a circle is drawn, in the next step, we form the set Candidates that contains all circles that
satisfy criteria for a next step. Most importantly, they do not intersect any already drawn circles. One
of the candidates is randomly chosen and drawn. This process repeats until Candidates is empty. In
three of four attempts, the Candidates set initially contains all circles that could be drawn in
quadrant of the given size.

The First Attempt.

In the first attempt no additional criteria are imposed. The procedure that draws a random set of
the non-intersecting circles is short and simple.

procedure attempt1()
 &window:=WOpen("height="||SIZE, "width="||SIZE, "label=1.", "fg=red")
 every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 while Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates))
 end

Some circles are drawn outside of the visible part of the picture, to avoid possible edge effects on
the picture.

This picture is not satisfactory: the circles are not dense enough and the parts left uncovered by
circles are too big. As all circles are chosen randomly, the program can, theoretically, draw denser
picture; however, it is not likely to happen in a reasonable number of executions.

The Second Attempt.

It was suggested that the program could choose circles that form a perfect quadratic or hexagonal
pattern, and then slightly translate individual circles in the random direction. Ideally, both higher
density and randomness can be achieved.

procedure attempt2()
 distance_between_centers:=(2*R+3)

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

5

 tolerance:=3
 &window:=WOpen("height="||SIZE, "width="||SIZE, "label=2.", "fg= dark green")
 every insert (Candidates:=set(),
 i:=-2*R to SIZE+2*R &
 j:=-2*R to SIZE+2*R &
 (i+100) % distance_between_centers <= tolerance &
 (j+100) % distance_between_centers <= tolerance &
 circle(i, j, R)
)
 while Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates))
 end

The algorithm is similar to the previous one. Additionally, an initial choice of the candidates is
narrowed to the circles with coordinates of the centres in the segments [k(2R+3), k(2R+3)+3],
k=0, 1, 2 ... We added the constant 100 to avoid aperiodicity of the operation % around zero.

However, the result of the second attempt is even less satisfactory.

Although the circles are dense, their distribution is too regular. The square pattern is clearly
visible, especially if seen from a distance. Variations of the values tolerance and
distance_between_centers do not help: the pattern can become less obvious only if the density is
significantly decreased.

The Third Attempt.

In the third attempt we applied a similar idea, but more locally. If circles are chosen so they touch
at least two already drawn circles, then the result is a perfect hexagonal pattern. We expected that,
using a slightly looser requirement: circles are drawn so they are close to two other circles, density
can be preserved, while irregularities will accumulate to the degree that hexagonal pattern will not be
clearly visible in picture.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

6

procedure attempt3()
 min_allowed_d:=0
 max_allowed_d:=5
 &window:=WOpen("height="||SIZE, "width="||SIZE, "label=3.", "fg=blue")
 every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 Drawn:=[]
 repeat
 { Candidates2:=[]
 every c:=!Candidates do
 { close_circles:=0
 every (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)
 do close_circles+:=1
 if (close_circles > 1) | (close_circles = *Drawn <= 1)
 then put(Candidates2, c)
 }
 if not(c:=?Candidates2) then fail
 Candidates:=eliminate_intersecting(Candidates, draw_circle(c))
 put(Drawn, c)
 }
 end

Our expectations are fulfilled and resulting picture looks significantly better; it is both dense and
irregular.

Some circles form hexagonal pattern, but it looks more like the natural tendency of the densely
packed circles than the result of some inadequate algorithm.

However, as can be seen from the picture, some relatively large empty areas occurred again on
pictures drawn with attempt3. Although it is not obvious from the above static picture, observation of
the program during work clearly reveals the origin of such empty spaces.

The set of the all drawn circles can form figures with large concavities that are bigger than one
circle. Some of these concavities can not be filled with densely packed circles.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

7

See, for example, the picture below: the green circles form a concave figure, and after red circle
(one in the center if you see this article in monochrome) is drawn, the large area around it can not be
filled any more.

The Fourth Attempt.

The problem with the previous attempt can be solved easily. We define the center of the first
drawn circle as the Center of the whole picture. Beside the previously mentioned criteria, drawn
circles are chosen to be relatively close (variable tolerance) to the Center. If tolerance is 0, the circle
closest to the center that does not intersect with other circles is drawn. This ensures that figures
formed by the circles have no large concavities.

procedure attempt4()
 min_allowed_d:=0
 max_allowed_d:=5
 tolerance:=5
 &window:=WOpen("height="||SIZE, "width="||SIZE, "label=4.", "fg=black")
 every insert(Candidates:=set(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 Drawn:=[]
 repeat
 { if /Center
 then c:=(Center:=?Candidates)
 else { Candidates2:=[]
 min_d:=1E5
 every c:=!Candidates do
 { close_circles := 0
 every (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)
 do close_circles+:=1
 if (close_circles > 1) | (close_circles = *Drawn <= 1)
 then { put(Candidates2, c)
 min_d >:= d(Center, c)
 }
 }
 every put(Candidates3:=[], (d(Center, c:=!Candidates2)<=min_d+tolerance) & c)
 if not(c:=?Candidates3) then fail
 }
 put(Drawn, c)
 Candidates:=eliminate_intersecting(Candidates, draw_circle(c))
 }
 end

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

8

Finally, the result satisfied all our criteria; at least sufficiently well for the textbook illustration.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

9

FUN WITH CO-EXPRESSIONS, PART ONE.
STEVE WAMPLER.

u
nicon (and Icon) users are likely to be familiar with the role that result sequences play in the
language1. Result sequence is the term coined to describe the sequence of results that an
expression is capable of producing during goal-directed evaluation. For example, the result

sequence of 1 to 4 is {1, 2, 3, 4}.

The term is, however, artificial; there is no language entity that is a result sequence. (Ralph
Griswold did experiment with a language Seque2 in the late 1980's that did elevate result sequences
into first class data objects, however.) Expressions simply produce results when evaluated, with the
ability to provide alternative results when backtracked into during goal-directed evaluation.

Nevertheless, the idea of result sequences as language objects is appealing. It's even possible to
think of expressions as being the language's way of expressing result sequences - the representation
of a result sequence then becomes the code that is capable of producing it. Hiroshi Shinohara has
been experimenting with this in his work on using generators as filters as seen recently on the Unicon
mailing list. (I'm not sure Hiroshi thinks of his work in quite this fashion, but that's how I see it!)

The biggest problem one encounters when attempting to work with result sequences as language
objects is that the representation of any result sequence (i.e. the code) is lexically fixed to the point in
the program where that code appears. This severely restricts the flexibility of this approach to
programming.

There is, however, a way forward. You can't separate a result sequence from the code that
generates it, but you can capture that code in a co-expression. The effect is one of 'freeing' a result
sequence from a single lexical location in a program, allowing the manipulation of the result
sequence, if not as a first class data type in Unicon, at least as a second class data type. I'll call this
new data entity a Result Sequence, using capitalization to distinguish it from the more general result
sequences found throughout Unicon code evaluation.

You can assign the Result Sequence to a variable, pass it to functions and procedures, and include
it in computations. In short, you can treat it nearly the same as you can other structured data
entities. (Note the 'nearly' - a Result Sequence is not a list. If you want a list, use a list.)

No data entity is useful unless the language provides operations for manipulating that data entity
and Result Sequences are no exception. Certainly the primary Result Sequence operation is goal-
directed evaluation - a key feature in Unicon and Icon that provides much of the expressiveness
inherent in those languages. By capturing a result sequence as a co-expression, several other
operations become available for manipulating that Result Sequence.

First, there is the obvious operation: activation (@). Activation simply produces the next result
from the sequence and fails if there are no results left. Activation is the foundation for all actions
involving co-expressions and, hence, is the gateway required to gain access to the result sequence the
co-expression represents. Most other Result Sequence operations are simply 'normal' Unicon
operations layered on top of activation.

1 For introduction see Result Sequences, The Icon Analyst, No 7, August 1991, pp. 5-8. [ed.]
2 For more details see Lost Languages - Seque, The Icon Analyst, No 19, August 1993, pp. 1-4 [ed.]

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

10

Activation is, by design, not a generating operation. When back-tracked into during goal-directed
evaluation, no further results are produced, even if the Result Sequence contains additional results.
One of the first operations that can be layered on top of activation is repeated alternation (unary |),
which turns any expression into a generating expression. So, the combined operation |@ allows the
use of a Result Sequence in backtracking contexts.

What can you do with a Result Sequence that might be hard to do when you're forced to access a
result sequence at a single lexical place? Lots of things.

How about producing every other result? If x is a Result Sequence, then: |{@x; @x} does the
trick. All results after the first n?

{every |@x\n; |@x} works just fine.

Want to interleave the results of two expressions? If x and y are Result Sequences for the two
expressions, then use: |@(x|y).

Some things are bit trickier, such as producing every nth result from Result Sequence
x: |{|@x\(n-1) & &fail; @x}. The &fail is needed to force the first subexpression (which is just an
expression to produce the first n-1 results from a Result Sequence) to generate all of its alternatives
before moving to the second subexpression. If you find the appearance of & &fail unsettling, as I do,
you can use Steve Hunter's technique for achieving the same effect: |{\/|@x\(n-1); @x}. (This is
visually appealing as \/ is reminiscent of the 'for all' operator common to logic systems - though it can
take a bit of thought to realize just why it works as a replacement for appending & &fail.
Unfortunately, it's not safe to carry the relationship with logic systems too far, as /\ is not the same
as 'for any' but rather equivalent to \/!) Perhaps just rewriting the above as |{every |@x\(n-1); @x}
is the clearest approach.

All of the above examples are concise and show the expressive power available in Unicon. However,
they also are perhaps too 'information dense' - the conciseness that authors of such code find
appealing can make it difficult for others to understand the meaning. For some reason it's
psychologically unappealing to have to spend so much time grasping the behaviour of so little
code. So perhaps it's better to spread out the code more, but still make it easy to use by placing such
operations into procedures. For example, the first example |{@x; @x} can be rewritten as a
procedure:

procedure evenResults(x)
 while @x do
 suspend @x
end

This becomes even more useful as the complexity of the operation increases.

This approach also allows the use of a meaningful name in place of a complex expression and
allows one to build up a package of useful Result Sequence operations. It might be a good exercise to
rewrite each of the above expressions as procedures (and no, simply embedding the expression into a
procedure, as in:

procedure evenResults(x)
 suspend |{@x; @x}
end

doesn't count!).

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

11

Thinking in terms of operating on sequences of results takes some getting used to, in part because
there are very few languages that provide the tools to do so. (I once asked a group of people to give
me a representation for the phrase “the value of x lies between 1 and 10” - the programmers in the
group [none of whom had seen Icon or Unicon] tended to give '(1 < x) and (x < 10)'. Only a
mathematician suggested '1 < x < 10'. What the mathematician saw as obvious wasn't obvious to
people thinking in terms of C or FORTRAN.) Result sequences are a major feature of Unicon and
using co-expressions to turn result sequences into Result Sequences can be a powerful tool for
expressing problem solutions.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

12

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

13

UNIFICATION IN PROPOSITIONAL CALCULUS.
KAZIMIR MAJORINC

ropositional calculus is perhaps the simplest and the best known example of a formal
theory1. The formulas of propositional calculus are either (1) propositional variables (for
example A, B, C, ...) or (2) constructed from other formulas using unary (~) or binary

connectives (|, &, >, ...). If infix notation for binary connectives is used, these formulas are similar to
the usual algebraic formulas: for example (~A), (A>B), (A>(~(A>B))) are formulas, while
A~B>B is not.

p

Somehow, surprisingly, a standard set of axioms for propositional calculus has not been
established; one can hardly find two books that use identical sets of axioms.

There is more agreement about rules of inference. Two of the most frequently used rules are (1)
substitution: if F is a theorem, X1, ..., Xn are some of the variables occurring in F and G1, ..., Gn are
formulas without occurrences of X1, ..., Xn then the formula F' obtained from F by simultaneous
substitution of all occurrences of X1, ..., Xn with G1, ..., Gn respectively is also the theorem and (2)
modus ponens: if formulas (F>G) and F are theorems, then G is also theorem. Additional rules of
inference are not necessary. Axioms are, by definition, also theorems of propositional calculus.

A logician usually defines propositional calculus syntactically, because syntax is finite and even -
visible, and as such it raises less doubts than any semantics2. However, the usual intention is to
finally add semantics to the defined syntax. Typically, variables are interpreted as statements of the
natural language (including mathematical extensions) and connectives ~, |, & and > as logical
operators “not”, “or”, “and” and “implies” respectively. With proper choices of axioms and inference
rules, propositional calculus is complete, i.e. all tautologies (i.e. statements that are true no matter
which natural language statements are represented by variables) and only tautologies are theorems of
propositional calculus.

Although the tautology concept might seem trivial and useless, it is not. For example, if we know
that (F1>F2) is a tautology, we also know that F2 is true whenever F1 is true; certainly, such a
conclusion is not trivial for every possible interpretation of F1 and F2 in natural language.

Definition of the propositional calculus is constructive; in principle, one can make a program that
derives all theorems of propositional calculus. However, after half a century of research, computers
have only established a marginal role in the development of the mathematical knowledge.
Furthermore, difficulties in designing programs that match human capabilities in games such as
chess, or especially go are not encouraging as it is probable that mathematics is more complicated
than these games.

1 Any introductory text in mathematical logic will contain an extensive survey of important results, for example any

edition of E. Mendelson, INTRODUCTION TO MATHEMATICAL LOGIC.
2 For example, some logicians do not accept that double negation implies affirmation. They, however, find formula as

((~(~A))>A) acceptable if it is defined as string of characters, without meaning.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

14

Theorems, as found in books are both true and interesting mathematical statements. In attempts
to automate their derivation1, two general approaches are used. In the first approach, one starts from
an interesting statement and tries to determine whether it is true. In the second approach, one starts
from statements known to be true and tries to find interesting consequences. These two approaches
are called automated theorem proving and automated theorem finding2 (far less researched with
exception of the works of S. N. Vassilyev3.)

In practice, the problem with automated theorem finding is always the same: naive algorithms for
deriving tautologies generate many obviously trivial, weak or other less than interesting theorems. If
interesting theorems are derived at all, it is not known how they could be identified and isolated from
myriads of others also generated in the process.

For example, substitution can be applied to any formula and infinitely many formulas can be
derived from it. Unfortunately, all these derived formulas are longer and weaker than the premise.
These are weaker in the usual mathematical sense that can be easily recognized but is hard to
formalize.

Modus ponens is different: the consequence is shorter and stronger than the longer one of the two
premises. Unfortunately, modus ponens can rarely be applied; almost certainly it cannot be applied
on two randomly chosen theorems of propositional calculus.

This difference suggests that integration of these two rules in some combined rule can both reduce
combinatorial explosion caused by substitution and increase the frequency of successful application of
modus ponens in the process of the development of propositional formulas. One possible combined
rule is (3) for two theorems F and (G>H), if there are substitutions s and t such that s(F)=t(G) then
t(H) is also a theorem.

The combined rule is not trivial any more. The essential part of the problem is determining
whether for given formulas F and G there exist substitutions s and t such that s(F)=t(G). That
problem also occurs in other contexts and the commonly used name for it is unification4 of formulas.

An algorithm for unification of two propositional formulas is easily implemented in a Unicon
program of about hundred and fifty lines.

link strings
link sets

$define NL "\n"
$define LINE repl("=", 20)
$define TRUE 1

1 Good survey article is M. Beeson, THE MECHANIZATION OF MATHEMATICS in C. Teuscher, (ed.) Alan Turing: Life and

Legacy of a Great Thinker, Springer-Verlag, Berlin, 2003.
2 L. Wos, THE PROBLEM OF AUTOMATED THEOREM FINDING. Journal of Automated Reasoning, Vol. 10(1), 1993, pp.

137-8.
3 Probably the best review of his work is S. N. Vassilyev, MACHINE SYNTHESIS OF MATHEMATICAL THEOREMS, Journal

of Logic Programming, Vol 9, 1990, pp. 235-66.
4 Extensive review can be found in F. Baader, W. Snyder, UNIFICATION THEORY, Chapter 8, pp. 439-526 in A.

Robinson, A. Voronkov (ed.), Handbook of Automated Deduction, Elsevier/MIT Press, 2001.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

15

$define FALSE 0
$define xxxxxx1 (
$define init_to :=:temp_init_to):=(if \temp_init_to then temp_init_to else
$define xxxxxx2)

procedure main()
 every k:=1 to 4 do
 { F:= [["(A>((B>(C>B))>D))", "((a>(b>c))>((a>b)>(a>c)))"],
 ["(A>(~A))", "((~B)>B)"],
 ["(A>(~B))", "(B>(~A))"],
 ["(A>(~B))", "(B>(~A))"]
][k]
 Fca:=[[TRUE, TRUE], [TRUE, TRUE], [TRUE, FALSE], [TRUE, TRUE]][k]
 write(LINE, NL, "Unification of: ")
 every i:=idx(F) do write(F[i], ", changes allowed: ", Fca[i])
 write("Unification succeeded: ", unified(F, Fca).formula)
 }
 end

The program links to standard libraries "strings" and "sets." A few simple macros are
defined. Only the infix macro operator init_to deserves some comment. The expression ((x init_to
expr)) is equivalent to longer expressions like {/x:=expr; x} or {if /x then x:=expr else x} that allow
initialization of variables in the same place they are used in loops. The macro init_to is usually slower
than initialization outside of the loop. In some expressions, like every ((x init_to 0))+:=1 to n, one
can replace ((x init_to 0)) with simple (x:=0). Also, one execution of the macro in some procedure
must be completed before another execution is started. Hence, nested expressions like ((x init_to ((y
init_to 0)))) do not work correctly.1 However, we believe that replacement of the frequently occurring
idioms or patterns in the programs with simple, non-redundant syntactical constructs reveals the
logic of the programming itself, so the price appears to be acceptable.2

The seemingly strange macros xxxxxx1 and xxxxxx2 have only one role: to balance the parenthesis
left open by init_to and prevent errors in text editors with integrated parentheses matching; the
definition of the macro init_to uses parentheses in an unusual way; for an excellent example see N.
Hodgons's SciTE3.

1 It seems to be one of the most frequent problems with macros.
2 C. Evans implemented a more powerful macro system and special syntax (x :$ expr) for {/x:=expr; x} in his private

build of Unicon.
3 <http://www.scintilla.org/SciTE.html>.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

16

For testing and demonstration purposes, four pairs of formulas are stored in the list F and passed
as an argument to the procedure unified. That procedure returns a record consisting of (1) the
formula resulting from unification and (2) a list of all performed substitutions.

The procedure unified accepts another argument, Fca, a list of Boolean values. For clarity of
intention the macros FALSE and TRUE are used respectively. In this implementation of unified,
only formulas F[i] such that Fca[i]=TRUE can be changed. If unification succeeds and Fca[i] was
FALSE, then F[i] can be obtained from F[3-i] by substitution. Less formally, F[i] is a special and
weaker case of F[3-i].

Some procedures used in the program can be useful in a more general context. They are copied
from other programs or generalized and extracted elements of the early working versions of this
program.

procedure is_true(B)
 if B==TRUE then return TRUE
 end

procedure card(predicate, X)
 every ((result init_to 0))+:=(predicate(!X) & 1)
 return result
 end

procedure card_nulls(X)
 every ((result init_to 0)) +:= ((/!X) & 1)
 return result
 end

procedure card_columns(LL)
 every ((result init_to *?LL)) <:= *!LL
 return result
 end

procedure idx(L)
 suspend 1 to *L
 end

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

17

procedure jdx(LL)
 suspend 1 to card_columns(LL)
 end

procedure column(LL, j)
 if /j then suspend column(LL, jdx(LL))
 else { every L:=!LL do
 put(((C init_to [])) , if j <= *L then L[j] else &null)
 return C
 }
 end

procedure projection(XX, index)
 if type(XX)=="list"
 then { result:=[];
 every X:=!XX do put(result, X[index])
 return result
 }
 end

procedure is_simple_type(x)
 if type(x)==("real"|"integer"|"string") then return x
 end

procedure generalized_application(p, L)
 every put(result:=[], p(!L))
 return result
 end

procedure equal_by_value(X)
 if not different_by_value(X) then return X
 end

procedure different_by_value(L)
 S:=set(L)
 if member(S, "&equal") & member(S, "&different")
 then error("Ambivalent different/equal_by_value.")
 if member(S, "&equal") then fail
 if member(S, "&different") then return L
 case card_nulls(L) of { 1: return L; 2: fail }
 return case card(is_simple_type, L) of
 { 1: L
 2: if L[1] ~== L[2] then L else &fail
 0: if different_by_value(column(L)) then L else &fail
 }
 end

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

18

The predicates is_true and is_false allow convenient combination of Boolean and success/ failure
program control flow.

The generator jdx(LL) accepts a list of lists as an argument; if understood as two-dimensional
array, jdx generates indexes of its columns. The procedure column(LL, j) returns j-th column of such
an array, i.e. list [LL[1][j], ..., LL[*LL][j]]; if the second argument is omitted, it generates all
columns of LL. Expressions symmetrical to jdx(LL), column(LL, j) and column(LL) are 1 to *L,
LL[j] and !LL respectively. Syntactical symmetry can be achieved by implementation of procedures
idx(LL)1 and row(LL, j).

The procedure projection(X, index) is a generalization of the procedure column(LL, j); it accepts a
list of tables as an argument and index can be any key in the table. Further generalization can be
useful.

The procedure generalized_application(p, L) returns the list [p(L[1]), ..., p(L[*L])]. It is similar
to R. Griswold's apply in the Icon Program Library, file "apply.icn". Further generalization can
be useful.

A few procedures with names containing the prefix card2 count elements of the structures
satisfying given criteria.

Unicon's built in operator === and its negation ~=== compare equality of the two structures
“by reference.” Although there are few similarities with set-theoretical equality, === does not satisfy
the axiom of extensionality3. For example, {1, 2}={1, 2} is true in set theory, while its Unicon
equivalent set([1, 2]) === set([1, 2]) does not necessarily succeed4.

Design and implementation of a relation more similar to set theory equality has been addressed in
the past5.

The procedures different_by_value and equal_by_value presented here are more limited than J. P.
de Ruiter's procedure. However, they have one useful additional property. Pseudo- keywords
"&equal" and "&different", are defined as equal_by_value and different_by_value to any value.
Comparison between "&equal" and "&different" is not defined and will result, in a runtime
error if attempted.

procedure is_variable(F)
 if find(F, &letters) then return F
 end

record character_index_level_type(character, index, level)
procedure character_index_level(F)
 suspend character_index_level_type(

1 The function key is equivalent to idx.
2 The name of the procedure is inspired by the set-theoretical concept of the cardinal number.

3 Sets are uniquely defined by their members, i.e. (∀x)(∀y)(((∀z)(z∈x ↔ z∈y)) ↔ (x=y))
4 Actually, set([1, 2]) === set([1, 2]) never succeeds in Unicon.
5 R. Griswold's procedure equiv (equiv.icn, I.P.L.) and J. P. de Ruiter's procedure same_value (mset.icn,

I.P.L.) should be mentioned.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

19

 cF:=!F,
 ((i init_to 0)) +:= 1,
 ((lev init_to 0)) +:= case cF of { "(": 1; ")": -1; default: 0}
)
 end

procedure main_connective(F)
 return equal_by_value([character_index_level(F), ["~"|">", "&equal", 1]])[1]
 end

procedure analysed_formula(F)
 T:=table()
 if is_variable(F)
 then T ["variable"]:=F
 else { m:=main_connective(F)
 T ["connective"]:=m.character
 T ["left"]:=F[2:m.index]
 T ["right"]:=F[m.index + 1: -1]
 }
 return T
end

The predicate is_variable allows all lowercase and uppercase letters as propositional variables.

The procedure character_index_level(F) generates records containing successive individual
characters of the formula F, the position index of the character in the formula and the number of
opened and unclosed parentheses before that position. Note that suspend, aside from its primary role,
resumes all generators like every.

Perhaps the most elegant procedure in the whole program, main_connective(F) returns a
connective ("~" or ">") enclosed in exactly one pair of parenthesis in the formula F and its position in
that formula.

The procedure analysed_formula accepts a formula as an argument and returns a table containing
the main connective and both the left and right subformulas of a given formula. If the main
connective is unary, i.e. "~", the left subformula is by the definition empty string.

Finally, we approach the most specific parts of the program.

record substitution(variable, formula)

procedure forced_substitution(F, Fca)
 if is_variable(!F)
 then if i:=idx(F) & is_variable(F[i]) & is_true(Fca[i])
 then return substitution(F[i], F[3-i])
 else { write("No substitution: formulas differ in variable "||
 "but substitution is not allowed.")
 fail
 }
 AF:=generalized_application(analysed_formula, F)

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

20

 "~==" !(D:=projection(AF, j:=!["connective", "left", "right"]))
 if j=="connective"
 then write("No substitution: different main connectives.")
 else return forced_substitution(D, Fca)
 end

procedure substitute(F, Fca, s)
 every is_true(Fca[i:=idx(F)])
 do F[i]:=replace(F[i], s.variable, s.formula)
 if find(s.variable, !F)
 then write("Substitution failed: ", s.variable, " cannot be eliminated.")
 else return s
 end

record unified_type(formula, substitution)

procedure unified(F, Fca)
 while different_by_value(F) do
 if not(s:=forced_substitution(F, Fca) &
 write(LINE, NL, "Substitution ", s.formula,
 " for ", s.variable, " suggested."
) &
 substitute(F, Fca, s) &
 write("Substitution succeeded.", NL, F[1], NL, F[2]) &
 put(((applied_substitutions init_to [])), s)
)
 then fail
 return unified_type(?F, applied_substitutions)
 end

The procedure unified contains a loop that is repeated as long as formulas F[1] and F[2] are
different. In the loop two elementary operations are performed, (1) searching for substitutions that
need to be performed and (2) performing the substitutions. If any of these two fail, unification also
fails. Those two operations are delegated to the procedures forced_substitution and substitute.

The prefix “forced” in forced_substitution suggests that a found substitution has to be applied;
otherwise, it would be impossible to unify two formulas. The forced_substitution first searches for the
difference between two formulas, translating them into the form of a tree 'on the fly' and then tries to
match these trees. There are a few different cases, dependent on the difference between formulas
F[1] and F[2].

In the simplest case exactly one of the formulas is a propositional variable; let us denote it with
F[i]. If changing F[i] is allowed then substitution of F[3-i] for F[i] is necessary for unification. If
changes to the formula F[i] are not allowed, then F[1] and F[2] cannot be unified.

If both formulas are variables, then either of the substitutions F[1] for F[2] or F[2] for F[1] can
be chosen.

If neither one of the formulas in F is variable and they differ in the main connective then no
substitution can unify them.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

21

Finally, if both formulas in F are complex, (i.e. not variables) and have the same main connectives
and differ in at least one of the corresponding subformulas then further searching is performed
recursively.

Once found, substitution can be performed easily. The procedure replace from "strings.icn"
in the Icon Program Library can be used for formulas in the form of the string.

Under some circumstances substitution fails, i.e. when a substituted variable still occurs in some
part of the formula F. This can happen if (1) the formula to be substituted for a variable contains the
same variable1; for example, if (~B) is substituted for B; or (2) when a substituted variable occurs in
a formula where changes are not allowed. If substitution fails, again, unification of the formulas is
impossible.

After the formulas are unified it does not matter which one is returned as result of the unification;
so a random choice is returned. Output produced by the program is relatively readable.

====================
Unification of:
(A>((B>(C>B))>D)), changes allowed: 1
((a>(b>c))>((a>b)>(a>c))), changes allowed: 1
====================
Substitution (a>(b>c)) for A suggested.
Substitution succeeded.
((a>(b>c))>((B>(C>B))>D))
((a>(b>c))>((a>b)>(a>c)))
====================
Substitution a for B suggested.
Substitution succeeded.
((a>(b>c))>((a>(C>a))>D))
((a>(b>c))>((a>b)>(a>c)))
====================
Substitution (C>a) for b suggested.
Substitution succeeded.
((a>((C>a)>c))>((a>(C>a))>D))
((a>((C>a)>c))>((a>(C>a))>(a>c)))
====================
Substitution (a>c) for D suggested.
Substitution succeeded.
((a>((C>a)>c))>((a>(C>a))>(a>c)))
((a>((C>a)>c))>((a>(C>a))>(a>c)))
Unification succeeded: ((a>((C>a)>c))>((a>(C>a))>(a>c)))
====================
Unification of:
(A>(~A)), changes allowed: 1
((~B)>B), changes allowed: 1

1 The occur-check test is frequently discussed in the context of Prolog. Most implementations do not perform

occur-check.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

22

====================
Substitution (~B) for A suggested.
Substitution succeeded.
((~B)>(~(~B)))
((~B)>B)
====================
Substitution (~(~B)) for B suggested.
Substitution failed: B cannot be eliminated.
====================
Unification of:
(A>(~B)), changes allowed: 1
(B>(~A)), changes allowed: 0
====================
Substitution B for A suggested.
Substitution failed: A cannot be eliminated.
====================
Unification of:
(A>(~B)), changes allowed: 1
(B>(~A)), changes allowed: 1
====================
Substitution B for A suggested.
Substitution succeeded.
(B>(~B))
(B>(~B))
Unification succeeded: (B>(~B))

For some pairs of formulas, for example (B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))) and
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), unification requires exponential running time.

====================
(B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))), changes allowed:
1
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), changes
allowed: 1
====================
Substitution (A>A) for B suggested.
Substitution succeeded.
((A>A)>(C>(D>((a>a)>((b>b)>((c>c)>d))))))
((A>A)>(((A>A)>(A>A))>((C>C)>(b>(c>(d>D))))))
====================
Substitution ((A>A)>(A>A)) for C suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>(D>((a>a)>((b>b)>((c>c)>d)))
)))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>D))))))
====================
Substitution (((A>A)>(A>A))>((A>A)>(A>A))) for D

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

23

suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>((b>b)>((c>c)>d))))))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A)))))))))
====================
Substitution (a>a) for b suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((c>c)>d))))))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A)))))
))))
====================
Substitution ((a>a)>(a>a)) for c suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>d))))))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>(d>(((A>A)>(A>A))>((A
>A)>(A>A)))))))))
====================
Substitution (((a>a)>(a>a))>((a>a)>(a>a))) for d suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((a>a)>(a>a))>((a>a)>(a>a)))))))))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((A>A)>(A>A))>((A>A)>(A>A)))))))))
====================
Substitution A for a suggested.
Substitution succeeded.
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A)))))))))
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A)))))))))
Unification succeeded:
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A)))))))))

The resulting formula is exponentially longer than the input of the program. Hence, improvement
of the algorithm is not possible without redefinition of the propositional calculus. This important

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

24

negative result is, however, not completely surprising. Similar inefficiencies are observed in the
related fields of propositional calculus, and relative improvements are achieved through introduction
of the equality in language or equivalent use of alternative data structures1. That idea is, also,
fruitfully applied on the unification problem.2

1 The most important examples are described in G. S. Tseitin, ON THE COMPLEXITY OF DERIVATION IN PROPOSITIONAL

CALCULUS, in Studies in Constructive Mathematics and Mathematical Logic, Part 2. Consultant Bureau, New York 1968,
pp. 115-25. and S. A. Cook and R. A. Rechkow, THE RELATIVE EFFICIENCY OF PROPOSITIONAL PROOF SYSTEMS. Journal of
Symbolic Logic 44 (1979), pp. 36-50. We addressed similar problem in K Majorinc, EXTENSION RULE FOR NON-CLAUSAL

PROPOSITIONAL CALCULUS, Fundamenta Informaticae, Vol 31, No 2, August 1997, pp. 107-16.
2 Few quadratic and linear time algorithms for unification in more general sense are reported. Perhaps the best known

one is described by A. Martelli and U Montanari in AN EFFICIENT UNIFICATION ALGORITHM, ACM Transactions on
Programming Languages and Systems 4(2), 1982, pp. 258-82.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

25

FROM MAILING LIST ARCHIVES.

con's mailing list archive contains lots of interesting ideas, notes and programs. However, its
huge size of about 10 000 pages, Spartan format, and unavoidable redundancies might
discourage many - if not the majority - of Unicon users from the study of that valuable

resource. In the following issues of The Generator we'll republish selected posts or their excerpts
that, we believe, deserve to be more readily available to Unicon users.

i
In this issue, G. Yee's implementation of mathematical functions from 1986 is presented. Note

that functions fail (instead of producing runtime error) if argument is not in the domain of definition,
e.g. sqr(-1), log(-1) etc. All procedures except floor(x) and ceil(x) have been incorporated into Unicon
and Icon as functions. Functions atan2(y, x) and atan(x) have been coalesced into atan(r1, r2) while
log(x) and log10(x) have been coalesced into log(x, b).

YEE'S MATHEMATICAL PROCEDURES.
From ralph Sat Mar 15 08:42:07 1986
From: “Ralph Griswold” <ralph>
Subject: math procedures

George Yee, a graduate student in the DEPARTMENT OF COMPUTER SCIENCE at the UNIVERSITY
OF ARIZONA, has written a package of math procedures in Icon. A UNIX-style manual page and the
source code for these procedures follow:

--
MATH(3.icon) Icon Program Library MATH(3.icon)
NAME
 sin, cos, tan, asin, acos, atan, atan2 - trigonometric func-
 tions and their inverses
SYNOPSIS
 link "math"
 sin(x)
 cos(x)
 tan(x)
 asin(x)
 acos(x)
 atan(x)
 atan2(y, x)
 dtor(deg)
 rtod(rad)
DESCRIPTION
 Sin, cos and tan return trigonometric functions of radian
 arguments x.
 Asin returns the arc sine in the range -pi/2 to pi/2.
 Acos returns the arc cosine in the range 0 to pi.
 Atan returns the arc tangent in the range -pi/2 to pi/2.
 Atan2(y, x) := atan(y/x) if x > 0,
 sign(y)*(pi - atan(|y/x|)) if x < 0,
 0 if x = y = 0, or
 sign(y)*pi/2 if x = 0 ~= y.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

26

 Dtor converts degrees to radians, while rtod converts radi-
 ans to degrees.
DIAGNOSTICS
 If |x| > 1 then asin(x) and acos(x) will fail.
MATH(3.icon) Icon Program Library MATH(3.icon)
NAME
 sqrt - square root
SYNOPSIS
 link "math"
 sqrt(x)
DESCRIPTION
 Sqrt(x) returns the square root of x.
DIAGNOSTICS
 Sqrt(negative) fails to produce a result.
MATH(3.icon) Icon Program Library MATH(3.icon)
NAME
 exp, log, log10 - exponential and logarithm
SYNOPSIS
 link "math"
 exp(x)
 log(x)
 log10(x)
DESCRIPTION
 Exp returns the exponential function of x.
 Log returns the natural logarithm of x.
 Log10 returns the logarithm of x to base 10.
DIAGNOSTICS
 Log(negative) and log10(negative) fail to produce a result.
MATH(3.icon) Icon Program Library MATH(3.icon)
NAME
 floor, ceil - floor and ceiling
SYNOPSIS
 link "math"
 floor(x)
 ceil(x)
DESCRIPTION
 Floor returns the largest integer no greater than x.
 Ceil returns the smallest integer no less than x.
--

math.icn - mathematical procedures for Icon programming language

Version 1.0 created on 10 February 1986.

Procedures developed in Icon by George D. Yee
1847 N. Frances Blvd.
Tucson, AZ 85712

Free distribution and use of this material is granted provided the

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

27

above credit is left intact on all source copies. No warranties
are made as to the correctness or suitability of these procedures
for any purpose. Please send any suggestions to me at the above
address.

procedure sin(x)
 return _sinus(numeric(x), 0)
end
procedure cos(x)
 return _sinus(abs(numeric(x)), 1)
end
procedure tan(x)
 return sin(x) / (0.0 ~= cos(x))
end

atan returns the value of the arctangent of its
argument in the range [-pi/2, pi/2].
procedure atan(x)
 if numeric(x) then
 return if x > 0.0 then _satan(x) else -_satan(-x)
end
atan2 returns the arctangent of y/x
in the range [-pi, pi].
procedure atan2(y, x)
 local r
 static pi
 initial pi := 3.141592653589793238462643
 return if numeric(y) & numeric(x) then {
 if x > 0.0 then
 atan(y/x)
 else if x < 0.0 then {
 r := pi - atan(abs(y/x))
 if y >= 0.0 then r else -r
 }
 else if x = y = 0.0 then
 0.0 # special value if both x and y are zero
 else
 if y >= 0.0 then pi/2.0 else -pi/2.0
 }
end
procedure asin(x)
 if abs(numeric(x)) <= 1.0 then
 return atan2(x, (1.0-(x^2))^0.5)
end
procedure acos(x)
 return 1.570796326794896619231e0 - asin(x)
end

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

28

procedure dtor(deg)
 return numeric(deg)/57.29577951308232
end
procedure rtod(rad)
 return numeric(rad)*57.29577951308232
end
procedure sqrt(x)
 return (0.0 <= numeric(x)) ^ 0.5
end
procedure floor(x)
 return if numeric(x) then
 if x>=0.0 | real(x)=integer(x) then integer(x) else -integer(-x+1)
end
procedure ceil(x)
 return -floor(-numeric(x))
end
procedure log(x)
 local z, zsq, ex
 static log2, sqrto2, p0, p1, p2, p3, q0, q1, q2
 initial {
 # The coefficients are #2705 from Hart & Cheney. (19.38D)
 log2 := 0.693147180559945309e0
 sqrto2 := 0.707106781186547524e0
 p0 := -0.240139179559210510e2
 p1 := 0.309572928215376501e2
 p2 := -0.963769093368686593e1
 p3 := 0.421087371217979714e0
 q0 := -0.120069589779605255e2
 q1 := 0.194809660700889731e2
 q2 := -0.891110902798312337e1
 }
 if numeric(x) > 0.0 then {
 ex := 0
 while x >= 1.0 do {
 x /:= 2.0
 ex +:= 1
 }
 while x < 0.5 do {
 x *:= 2.0
 ex -:= 1
 }
 if x < sqrto2 then {
 x *:= 2.0
 ex -:= 1
 }
 return ((((p3*(zsq:=(z:=(x-1.0)/(x+1.0))^2)+p2)*zsq+p1)*zsq+p0)/
 (((1.0*zsq+q2)*zsq+q1)*zsq+q0))*z+ex*log2

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

29

 }
end
procedure exp(x)
 return 2.718281828459045235360287 ^ numeric(x)
end
procedure log10(x)
 return log(x)/2.30258509299404568402
end
procedure _sinus(x, quad)
 local ysq, y, k
 static twoopi, p0, p1, p2, p3, p4, q0, q1, q2, q3
 initial {
 # Coefficients are #3370 from Hart & Cheney (18.80D).
 twoopi := 0.63661977236758134308
 p0 := 0.1357884097877375669092680e8
 p1 := -0.4942908100902844161158627e7
 p2 := 0.4401030535375266501944918e6
 p3 := -0.1384727249982452873054457e5
 p4 := 0.1459688406665768722226959e3
 q0 := 0.8644558652922534429915149e7
 q1 := 0.4081792252343299749395779e6
 q2 := 0.9463096101538208180571257e4
 q3 := 0.1326534908786136358911494e3
 }
 if x < 0.0 then {
 x := -x
 quad +:= 2
 }
 y := (x *:= twoopi) - (k := integer(x))
 if (quad := (quad + k) % 4) = (1|3) then
 y := 1.0 - y
 if quad > 1 then
 y := -y
 return (((((p4*(ysq:=y^2)+p3)*ysq+p2)*ysq+p1)*ysq+p0)*y) /
 ((((ysq+q3)*ysq+q2)*ysq+q1)*ysq+q0)
end
procedure _satan(x)
 static sq2p1, sq2m1, pio2, pio4
 initial {
 sq2p1 := 2.414213562373095048802e0
 sq2m1 := 0.414213562373095048802e0
 pio2 := 1.570796326794896619231e0
 pio4 := 0.785398163397448309615e0
 }
 return if x < sq2m1 then
 _xatan(x)
 else if x > sq2p1 then

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

30

 pio2 - _xatan(1.0/x)
 else
 pio4 + _xatan((x-1.0)/(x+1.0))
end
procedure _xatan(x)
 local xsq
 static p4, p3, p2, p1, p0, q4, q3, q2, q1, q0
 initial {
 # coefficients are #5077 from Hart & Cheney. (19.56D)
 p4 := 0.161536412982230228262e2
 p3 := 0.26842548195503973794141e3
 p2 := 0.11530293515404850115428136e4
 p1 := 0.178040631643319697105464587e4
 p0 := 0.89678597403663861959987488e3
 q4 := 0.5895697050844462222791e2
 q3 := 0.536265374031215315104235e3
 q2 := 0.16667838148816337184521798e4
 q1 := 0.207933497444540981287275926e4
 q0 := 0.89678597403663861962481162e3
 }
 return x * ((((p4*(xsq:=x^2)+p3)*xsq+p2)*xsq+p1)*xsq+p0) /
 (((((xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0)
end

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

