
The
Generator

IN THIS ISSUE:

R a l p h G r i s w o l d ' s L e g a c y 1
U n i c o n P r o j e c t M o v e s N o r t h 2
A U n i c o n S h e l l 3
F u n W i t h C o - e x p r e s s i o n s , p a r t 3 33
I n t e r o p e r a t i n g W i t h P H P 39
U n d e r d o c u m e n t e d U n i c o n 40

“I KNOW WHAT I HAVE WITNESSED. NOW IT IS YOUR TURN.
PREPARE YOURSELF FOR A JOURNEY INTO A WORLD WHERE

EACH NEW STEP MAY GIVE YOU A BETTER UNDERSTANDING

OF YOUR OWN REALITY."

VOL 2. NO 2.

DECEMBER MMVI.

STATEMENT OF PURPOSE

The Generator is an international, non-for-profit journal devoted to the use of the Unicon
programming language and its predecessor and subset, the Icon programming language.

The Generator can be freely redistributed in its complete and unchanged form.

PRINTING INSTRUCTIONS

The Generator is designed to be printed on the both sides of the paper. It is published in Letter
format; we hope our readers can manage to print it on A4 paper when needed, and welcome suggestions.

In some situations, the printing options Auto-rotate and Center and Fit to paper may be appropriate.

CALL FOR PAPERS

The Generator publishes a wide range of articles: papers, reviews, notes, reports etc. All articles
contain some amount of the previously unpublished material; an exception is material previously

published on less formal ways (preprints, mailing list and newsgroups posts etc.)
No particular article style is preferred.

Code should follow Icon and Unicon Projects' standard formatting conventions.
All submitted articles are reviewed.

The author permits unlimited publishing of the submitted article in The Generator, including any
printed/bound issues, reprints, and collections.

Copyright of the articles is not transferred to The Generator.

EDITORIAL BOARD

David Gamey, Toronto, Canada, <David Gamey at rogers com>.
Clint Jeffery, Las Cruces, New Mexico, USA, <jeffery at cs nmsu edu>, editor.

Frank J. Lhota, Waltham, Massachusetts, USA, <lhota adarose at verizon net>.
Kazimir Majorinc, Zagreb, Croatia, <Kazimir at chem pmf hr >.
William H. Mitchell, Tucson, Arizona, USA, <whm at mse com>.

Steve Wampler, <sbw at tapestry tucson az us>.
 [E-mail addresses follow usual syntax.]

TYPESETTING

Typesetting is done by authors, reviewers and the publisher of The Generator.
The illustrations: Monsters of Stone, Omega Font Labs,

<http://www.moorstation.org/typoasis/designers/omega/omega.htm> and DBL Corners, House of
Lime, <http://www.houseoflime.com>.

The fonts: Weatherly Systems Inc. Ramona, Bitstream De Vinne and Pica10 and Corel
Fra nk e n s t e i n .

PUBLISHER

Clinton Jeffery, Moscow, Idaho USA.

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

RALPH GRISWOLD'S LEGACY

alph Griswold passed away this year. His work on SNOBOL with industry colleagues is what
Ralph is best known for, but I suspect that his greatest long-term legacy will end up being the
impact he had on many students. My impression, which others may correct, is that Ralph was

not the sole inventor, nor even a primary coder for the Icon language, he chose the more difficult path of
challenging students to rise to the occasion. Sometimes he was happier with the results than at other
times, but in all cases the students learned more this way.

Ralph's legacy vis a vis Unicon is also interesting. He commissioned early work on Unicon's
predecessor Idol, specifically funding its initial distribution and the writing of the Idol technical report.
However, Ralph had no particular interest or need for objects, classes, or packages: he mostly wrote
Icon programs that were seldom larger than a few hundred lines. When Idol merged with Shamim
Mohamed's Unicon POSIX facilities and Federico Balbi's ODBC extensions, Ralph specifically objected
to calling the result Icon-2, not wanting any misunderstanding about whether Icon Project had been
involved (it had not, other than contributing 90% of the code by means of Icon's public domain release).
So indirectly, Ralph helped choose our name, and the name change incidentally freed us from the chains
of a publishing contract for the Unicon book, propelling us towards an open documentation license.

Although Icon has influenced many popular languages, at this writing no language other than Icon
and Unicon have really gotten generators and goal-directed evaluation “right”. Whether Ralph would be
happy with where Unicon has taken his language family and where it is heading is anyone's guess. From
this editor's perspective, the important thing about Unicon is to make Ralph's language family useful to
more people in a broader range of application domains than Icon serves. This includes larger scale,
higher performance applications with extensive input/output requirements that go beyond Icon's string
and list processing, and text file manipulation roots. Icon continues to serve as an example to more
mainstream languages such as Python. The better Unicon manages to become, the more relevant that
example, perhaps the more that mainstream languages may understand and adopt the benefits of
generators and especially, goal-directed evaluation.

1

r

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

UNICON PROJECT MOVES NORTH

nicon Project is moving to Moscow, Idaho, where Clinton Jeffery and his team are joining the
University of Idaho. Unicon's new home at the edge of the Rocky Mountains places it at an
institution where Unicon research and development can advance. Aside from allowing Jeffery

more time for Unicon-related research and support, Idaho appears to be a better place for the doctoral
students who create some of the most important advances in the implementation.

Of course, Unicon's hosting on Source Forge is not affected by such moves. Source Forge has had
difficulty serving up large files from its web servers, so a virtual move of the project to a new host is not
inconceivable, but will be done only as a last resort if no alternative is possible.

Those of you with a sense of humor will no doubt want to refer to this issue as “the co-expressions issue”
and then look back at preceding issues and wonder if The Generator is mainly devoted to the study of
co-expressions! We will keep running articles on co-expressions whenever they are available, but I expect
The Generator to have many different themes in future issues.

2

u

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

A Unicon Shell
Art Eschenlauer

Abstract

A proof-of-concept implementation of a shell for Unicon tasks is described. The shell
permits new solutions to be composed from previously translated Unicon programs. The
shell can read and execute a script that defines a new solution without invoking the Unicon
translator. Compatible tasks are ordinary Unicon programs in every way except that they
use the Stream interface in lieu of resumption expressions when transferring control of
execution to other tasks in the solution. The Stream interface also provides uniform
methods for sequentially exchanging data values with co-expressions, lists, and files.

Introduction

s computer programs become increasingly complex, it is necessary to develop strategies to
manage their complexity. Object-oriented methodology is recommended to organize and
encapsulate data when programs grow beyond 10,000 lines or so. The "Unix philosophy" [1]

takes a different approach to building complex systems, which has been summarized (by Doug McIlroy
and Eric S. Raymond respectively) as "Write programs that do one thing and do it well. Write programs
to work together." or "Write simple parts connected by clean interfaces." In other words, rather than
composing complex programs, compose solutions to complex problems by creating combinations of
simple, well-tested programs.

In the Unix user's view of the world, classic "simple" tours-de-force are invoked from an installation's
bin directories. The programs typically read and write text streams, so that the user can use pipes to
combine them into powerful solutions, with each program running in its own process space. This is so
effective that the user frequently can solve a problem by combining existing programs rather than
resorting to writing any new programs. Creating solutions this way is one application of the "pipes and
filters" design pattern [2].

Using pipes to compose multi-process solutions from existing programs has worked very well for
more than 30 years; however, it does force programs to serialize data into (usually text-based) streams
in order to pass them to other programs, regardless of whether two collaborating programs are executed
on the same CPU or on different continents. Although an extremely persuasive argument can be made
for always using plain text serialization as the interface mechanism, other inter-process communication
[3] mechanisms have been employed, particularly when coupling several processes that are parts of a
tightly integrated system such as a database management system or a web server.

3

a

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

One alternative to partitioning each processing step into a separate process is to put each step into
one of several coroutines [4], all of which are executed within a single thread of execution. The process
"resumes" each coroutine (i.e., makes it the active coroutine) when the next datum needed by that
coroutine becomes available. A coroutine resembles a subroutine in that it is made active by other
routines. It differs from a subroutine in one important respect: A subroutine returns, abandons its state,
and (the next time that it is invoked) starts from its entry point; a coroutine, by contrast, suspends
execution, maintains its state, and (the next time it is resumed) continues execution from the point at
which it suspended.

Icon co-expressions provide a framework for straightforward implementation of coroutines [5,6].
Because each co-expression is created with its own execution stack and its own copies of the local
variables of the procedure in it was created, it can maintain its state and resume execution from the
point at which it yielded control. When one co-expression enters a resumption expression, it yields control
of execution to another co-expression. (A co-expression that has previously yielded control of execution is
said to be resumed when another co-expression yields to it. On the other hand, a co-expression beginning
execution from its entry point, without having previously yielded control of execution, is said to have
been activated. A resumption expression may either activate or resume another co-expression.)

When a co-expression enters a resumption expression, it transmits a data value to the co-expression
that it is resuming, but if no value is supplied in the resumption expression, the null value is
transmitted. Transmitted data values may be of any Icon datatype. A resumption expression not only
transmits data and yields control of execution, but it also produces whatever value is later transmitted
when another co-expression resumes the co-expression in which the resumption expression appears;
hence, the only way that a co-expression can "receive" a transmitted data value is if it has previously
yielded control via a resumption expression (hence, any value transmitted during activation of a co-
expression is discarded). For an illustration, consider this scenario:

1. Co-expression B activates co-expression A in the resumption expression @ A
2. Co-expression A transmits the value 1 to co-expression B in the resumption expression
 1 @ B
3. Co-expression B transmits the value 2 to co-expression A in the resumption expression
 2 @ A

The resumption expression @ A produces the value 1, and 1 @ B produces the value 2:

Co-expressions provide the basis for implementation of MT Icon, the multitasking Icon interpreter
[7] that is incorporated into the Unicon programming language [8,9]. MT Icon permits a Unicon
program to load and execute several previously translated Unicon programs within the same interpreter
thread. Each loaded program, referred to as a “task”, begins execution in its own co-expression, starting

4

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

from its "main" entry point. MT Icon is a co-operative, single-threaded multitasking system; the tasks
switch into and out of the thread of execution by the Icon co-expression activation/resumption
mechanism. MT Icon and Unicon do not support multiple threads per process; the interpreter runs in a
single thread and executes only one task at a time. Communication among the several tasks, therefore,
becomes a matter of intra-process (and intra-thread) communication, and different tasks can safely
share references to the same data in memory. There are several well-defined interfaces by which one
task may obtain data values or references to data structures (such as tables and lists) from another
task:

• As with ordinary co-expression resumption, data values or references are transmitted when
one task resumes another.
• When a parent task loads a child task, MT Icon permits the former to pass to the latter a list
of arguments that may have any Unicon type, e.g., an argument may be a non-string value and
can even be a reference to the &main co-expression of another task.
• One task may obtain a reference to a variable within another task using the variable()
function.

This article describes a proof-of-concept Unicon implementation of a "shell" for Unicon. This shell
program:

1. Takes as input a text script that defines the composition of a solution from several tasks
2. Specifies which tasks should be activated, in what order.
3. Uses the load() function to load each task from a previously interpreted Unicon program.
4. Establish a coroutine for each task.
5. Activates tasks as specified in the input script.

The shell relies upon a "Stream" interface that:

• Ensures that the sequence of values that a consumer receives from a producer does not
depend on whether the consumer or the producer is activated first.
• Provides a single set of methods for sequentially exchanging data values with lists, files, and
co-expressions.

Use Cases

The principal value of a shell is that it permits the user to execute a complex solution assembled from
previously created and tested components. In the context of this report, a solution is realized by an input
script, and a component of a solution is realized by a translated Unicon program that can be loaded into
the Unicon interpreter as a task.

Use Case: Run Solution

1. The user invokes the shell program with an input script.
Extension: If no script exists defining a desired solution, the user needs to Create Solution.

Use Case: Create Solution

1. The user envisions a solution composed of several components.
Extension: If the solution is a complex combination of components, the user may benefit from
drawing a graph describing the relationships among the components of the solution.

5

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

2. For each component of the solution, the user selects a previously translated Unicon program
that the shell may load and execute as a task.
Extension: If no program exists for a task, the user must Create, Translate, and Test Program.
3. The user determines the argument list for invoking each task.
4. The user writes and tests the shell script.

Use Case: Create, Translate, and Test Program

1. The user writes a conventional Unicon program.
• At any point where the user plans for the program to transfer both a data value and
the control of execution to another task, the user applies the Get() or Put()
method of the Stream interface to access the task.

2. At points where the user plans for the program to exchange data values with a file or list
(while retaining control of execution), the user may choose to apply appropriate methods of the
Stream interface to access the file or list reference.
3. The user invokes the Unicon translator and tests the program.

Design Objectives

The Unicon Shell is organized in two components, a shell interpreter and an underlying streams
interface. The following design objectives guided the implementation of shell.icn and Stream.icn:

shell.icn

• shell.icn should interpret scripts, so that the Unicon translator is not required to execute a
new solution composed from previously translated Unicon programs.
• shell.icn should load tasks and pass co-expression references (for other tasks) as arguments
to tasks. However, shell.icn should not be responsible for determining the role that a task plays
in producer-consumer or client-service relationships. The burden of determining that role is
placed on the programmer defining and coding the task itself.
• shell.icn should permit explicit specification of lists that several tasks need to access, to ease
implementation of inter-task queuing of data values.
• shell.icn should provide a mechanism whereby two child tasks do not go into "infinite failure"
(where, alternately, each of the two tasks' co-expressions is resumed by and transmits failure to
the other). This mechanism should not place an undue burden on how the child tasks are coded.

Stream.icn

• Stream.icn should provide a common interface for exchanging data with files, co-expressions,
and lists.
• Operations that are essentially equivalent should be invocable by this interface in the same
way regardless of whether a file, list, or co-expression is encapsulated by the Stream. Stream.icn
should thereby provide a mechanism whereby a producer or consumer program can first be
tested using Streams encapsulating the standard input and standard output files and then,
without modification, the program can be run with shell.icn, using Streams encapsulating co-
expressions.
• Stream.icn should implement a mechanism to permit a producer co-expression to pass the
same sequence of values to a consumer co-expression, regardless of whether the producer or the
consumer is activated first.

6

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

• Stream.icn should implement routines to ease implementation of switching between a "client"
task and a "service" task.

Stream.icn - A Common Interface to Co-expressions, Files, and Lists

The Stream() constructor produces instances of three classes: class Streamf for files, class
StreamC for co-expressions, and class StreamL for lists. Because these classes present a common
interface, programs can be written to use instances of these classes without the need to distinguish
which class an object instantiates. However, although all three classes present the same interface (i.e.,
have the same methods defined), the Push() and Pull() methods succeed only for instances of
StreamL.

The class produced by Stream() depends on the arguments passed when Stream() is
invoked:

Invocation Produces Behavior of Stream() Constructor

Stream(f) Streamf

When an open file is the argument, Stream() creates an
instance of the file-encapsulating class, and produces that
instance as the result. This instance can be used to manage this
previously opened file.

Stream(s1,s2,...) Streamf

When the arguments are the same as the arguments for
open(), Stream() typically opens the file, creates an
instance of the file-encapsulating class, and produces that
instance as the result; this instance can be used to manage the
newly opened file. However, when the filename is "-" and the
filemode is "r" or "w", behavior is the same as for
Stream(&input) or Stream(&output), respectively.

Stream(L) StreamL
When the argument is a list, Stream() creates and

produces an instance of the list-encapsulating class.

Stream(C,s2) StreamC

When a co-expression reference is the first argument and a
filemode ("r" or "w") is the second argument, Stream()
creates and produces an instance of the co-expression-
encapsulating class. A program designed to act as a producer
should use the "w" filemode when creating a StreamC instance to
manage communication with a consumer task; a consumer
should use the "r" filemode. A program designed to act as a
client should use the "w" filemode when creating a StreamC
instance to manage communication with a service task.

where f = file, s1 = filename string, s2 = filemode string, L = list, C = co-expression
Each class implements the following interface:

Method L f C Behavior

Get(x?) : x OK OK OK Produces the value produced by get(L), read(f), or

7

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

(x@C)\1. If the Stream encapsulates a co-expression, then
Get() can transmit one value (the argument of Get(x)) and
produce another.

Put(x+) :
L

OK OK OK

For StreamC, transmits each argument (beginning with the
first) to the underlying co-expression, and produces a list of the
results produced by the co-expression resumptions.
For StreamL, puts each argument (beginning with the first) onto
the end of the underlying list, and produces a list that consists of
the arguments in the order that they appeared in the argument list.

For Streamf, writes each argument (beginning with the first) to
the underlying file, and produces a list that consists of the
arguments in the order that they appeared in the argument list.

Pull() : x OK fails fails Produces the value that would be produced by pull(L).

Push(x+) :
L

OK fails fails

Pushes each argument (beginning with the first) onto the
beginning of the underlying list, e.g., if three arguments are
provided, then after the operation is complete, the list will begin
with the third argument. Produces a list that consists of the
arguments in the order that they appeared in the argument list.

Select(i)
: i | n

OK OK OK

Produces the null value (for Streamf or StreamC) or the length
of the list (for StreamL) if the select succeeds, i.e., if Get() is
expected to produce a value. Fails if Get() is expected to fail.
For StreamC, the expectation is based on whether the last
resumption of the co-expression succeeded. The argument specifies
the timeout in milliseconds for an encapsulated file.

Flush() :
f | n

OK OK OK
Produces the result that flush() produces for a file.

Produces a null value for other classes.

Close() :
f | n

OK OK OK

For Streamf, closes the underlying file, and produces the result
that close() produces for the file. For StreamL, replaces the
underlying list with an empty list, and produces the null value.
For StreamC, transmits failure to the underlying co-expression if
and only if filemode was "w" when object was constructed. Produces
the null value. May be called repeatedly.

Type() : s OK OK OK
Produces a string ("file", "list", or "co-expression")

corresponding to the underlying datatype of the instance of the
StreamC class.

Data() :
L | f | C

OK OK OK
Produces the co-expression, list, or file underlying the instance

of the StreamC class.

where L = list, f = file, C = co-expression, s = string, i = integer, n = &null, | = or,
x = any value, x? = 0 or 1 argument of any value, x+ = 1 or more arguments of any value

8

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

StreamC has an important additional feature. Because a co-expression cannot receive a transmitted
value until after it has been activated and has yielded control of execution, it would ordinarily be
necessary to activate the consumer in a producer-consumer relationship before resuming the producer
(or the service in a client-service relationship). If the StreamC class' constructor method is invoked with
a "w" filemode, it ensures that the co-expression that it manages has been activated before transmitting
a value to it. StreamC tracks this via the set referenced by the global variable StreamC_activated; this
set may be created in another task.

To aid in tracing transfer of control between tasks, Stream.icn defines global variables
 StreamC_trace and trace. To trace execution of StreamC code (without modifying and re-translating
Stream), a task can assign a string value to StreamC_trace; this is demonstrated in the "Filter Pattern"
example below. If StreamC_trace is not null and trace is null when the StreamC constructor is invoked,
the constructor assigns it the value for the built-in function write(). Programs presented in the
appendix adhere to an informal standard of writing programs to accept an optional first argument of
"-t"; if they receive this argument, they assign a string value to StreamC_trace (to turn on this tracing).

The reason that no Stream interface was implemented for strings is that Unicon (and Icon) strings
are not mutable structures; all string operations produce new strings in contrast to modifying existing
strings. Whether a Stream interface for strings should be implemented raises philosophical questions
(e.g., is it sensible and similar?) and semantic questions (e.g., should the Get() method produce
substrings, and, if so, should it use newline characters in the string as a separator?).

Caution: Beware the effect of backtracking in expressions that invoke the Get(), Put(),
Pull(), Push(), and Close() methods. Theoretically, if one of those methods is resumed for
an additional value, its effects on managed co-expressions and files cannot be reversed. Therefore, for
consistency, the interface is designed so that all methods produce exactly one value on success, i.e., they
are not generator functions. It is easy, however, to write expressions mistakenly that result in multiple
invocations of these methods. For example:

 every (s := ((1 to 3) || mystream.Get())) do {
 write(s)
 }

will get three values from mystream, which is correct but which may not be what the programmer is
expecting to happen.

shell.icn Launches Collaborative Multiprogram Solutions

The shell.icn program interprets input scripts defining solutions, each of which may be composed of
several tasks. Each task is defined by an "icode file", i.e., a translated Unicon program. The tasks are
loaded and activated as specified in the script. The tasks collaborate via the co-expression switching
mechanism; shell.icn monitors the task-switching events and intervenes to prevent "infinite loops of
failure".

shell.icn - Usage

shell.icn is invoked as:

 shell [options] {arguments]

9

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

where options are:

 -t - trace execution of the script interpreter
 -i file - read script to be interpreted from file
 -p prog - invoke prog as preprocessor
 (option -p overrides option -i)

If neither the -i option nor the -p option is specified, the script is read from the standard input. See
"The Preprocessor Pattern and a Command Line Interface Program" below for an example of using the
-p option.

The use of arguments is demonstrated in the "Recursive Invocation and Argument Substitution"
example below.

shell.icn - Input Script Format and Grammar

The goal of this project was to produce a working model of a Unicon shell. The grammar was chosen
arbitrarily, with the objectives of balancing simplicity of implementation and simplicity of use (as
subjectively evaluated by the author) to use for experimentation and to serve as a starting point for
discussion. No assertion is made that the grammar chosen is the most appropriate, expressive, or useful
for shell scripts; there may well be room for improvement. Here is a simple example script:

 # Assign to the CONS symbol the task defined by
 # the icode file "consumer", invoked with two arguments,
 # PROD (another task) and the string "-".
 # consumer.icn is coded to open its first argument as a
 # Stream with filemode "r" and to open its second
 # with filemode "w".

 CONS := consumer PROD - # task_declaration line

 # Assign to the PROD symbol the task defined by
 # the icode file "producer", invoked with one argument,
 # CONS (another task).
 # producer.icn is coded to open its first argument as a
 # Stream with filemode "w".

 PROD := producer CONS

 # Activate the task assigned to the PROD symbol

 @ PROD # task_activation line

 # redeclare the tasks and activate
 # the consumer first instead of the producer

 CONS := consumer PROD -
 PROD := producer CONS
 @ CONS

The grammar for input lines is as follows (terminal symbols are enclosed in < > pairs, and reserved
words are enclosed in double quotes):

 input_file_line ::= task_declaration |

10

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 list_symbol_declaration |
 task_activation |
 comment

 task_declaration ::= lvalue ":=" <program_name> arguments

 list_symbol_declaration ::= "list" lvalues

 task_activation ::= "@" lvalues

 comment ::= "#" many(<&cset>)

 arguments ::= arguments argument | argument | <nothing>

 argument ::= lvalue | "$" many(<&digits>) | alphanum

 lvalues ::= lvalues lvalue | lvalue

 lvalue ::= alphanum

 alphanum ::= many(<&letters> ++ <&digits>)

 many(c) ::= c many(c) | c

The symbols list, :=, @, $, ;, and # are reserved, as are the lvalues _HALT_, _LIST_,
NEWLINE, _SCRIPT_, _SHELL_, and SHELL_MAIN.

The following further rules apply to scripts:

• Semicolons may be substituted for line breaks.
• Names of programs that are not in the current working directory must include relative or
absolute path information suitable for the platform; the program name supplied is passed
directly to the load() function.
• List symbols must be declared before they are used in task declarations.
• Task declarations may include forward references to other tasks.
• Task activations must be deferred until all referenced tasks have been declared.
• Once a task has terminated, the corresponding task symbol must be redeclared before it can
appear in another task_activation line. Once one task symbol has been redeclared or a new task
symbol has been declared, any other previously declared task symbols must be redeclared before
any task can be activated. Although list symbols need not be redeclared, the lists that they
represent are replaced with empty lists when new task declarations are encountered.
• If desired, string-valued arguments in task declarations may be delimited with double quotes
in any way permitted by the balq(s) procedure (from the scan.icn file in the Icon Program
Library), where balq(s) is invoked with a single argument. (The grammar above does not
reflect the possibility of quotation.)

shell.icn - Internal Design and the monitor_task() Procedure

The procedure token() performs rudimentary lexical analysis, and the procedure main()
parses the input script. The convert_tasks() procedure loads the tasks, wraps them with a

11

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

monitoring co-expression (which is created by via the monitor_task() procedure), and activates
them.

When a co-expression has failed to produce a result, it is important that the failure be handled in a
deterministic manner. For example, if task A transmits failure to task B (implicitly or using the
cofail() function), it is important that task B handle this failure correctly: task B must not
transmit failure back to task A; otherwise, tasks A and B can go into "infinite failure", i.e., A fails to B
which fails to A which fails to B ad infinitum.

To avoid "infinite failure" scenarios, shell.icn invokes each task via a separate co-expression that the
monitor_task() procedure creates. This co-expression refuses to resume the monitored task when
the latter has "unrecoverably cofailed to" the former. Cofailure is "unrecoverable" when there is no co-
expression that clearly should be resumed next. Thus:

• If the monitoring co-expression receives a value (or failure) from a task other than the
monitored task, it pushes the reference to the transmitting task onto a list and transmits the
value (or failure) received to the task that it is monitoring.
• If the monitoring co-expression receives a value (or failure) from the monitored task, and if it
cannot pop a reference to a task from the list, it cofails to &main; otherwise, it transmits the
value (or failure) to the task referenced by the value popped from the list.

There is a performance penalty for using this scheme; each task switch costs two co-expression
switches instead of one.

shell.icn - Producer/Consumer and Client/Server Relationships

The principal requirements that shell.icn places on the implementation of the tasks that it runs are:

• Producers should use StreamC objects constructed with filemode "w" to communicate with
(transmit data and switch control of execution to) consumer tasks.
• Clients should use StreamC objects constructed with filemode "w" to communicate with
service tasks.

These rules ensure that clients and consumers always receive the first data value transmitted.

Another benefit of using StreamC to implement task switching is that, if all data values passed are
(or can be) strings, many producer or consumer tasks can be tested (without running shell.icn at all) by
using ordinary shells (Bourne shell, bash, csh, ksh, zsh, etc.) with standard system pipe invocation, e.g.:

 producer - | consumer - -

Note well: The implementation of the tasks themselves, and how they treat their arguments, is what
determines which role (producer or consumer) each task plays in a producer-consumer relationship
between two tasks. It is not the script interpreted by shell.icn that does this. The script is merely
responsible for passing to each task the appropriate arguments in the appropriate positions - what is
appropriate for each task is determined by the task's definition.

12

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

Examples of Solutions and their Components

This section presents several patterns for solutions that can be defined by input scripts for shell.icn.
Regardless of each solution's simplicity, a graph of the solution is included to demonstrate the extension
to the first step in the "Create Solution" use case. For brevity, the examples presented here have
typically been stripped of most of their error checking and tracing code. The task programs are
presented in full in the Appendix; one common difference between most of the examples here and in the
Appendix is that, in the Appendix, "-t" is commonly as the first option to activate tracing of the StreamC
class.

The Filter Pattern

This pattern applies tasks in a fashion very similar to how many Unix programs are applied from the
command line. This pattern differs from the traditional Unix pipe-filter pattern in that the "pipelines"
are only one value long.

In the test.shell example, "consumer" acts as an "output filter".

In this diagram:

• The consumer in a producer-consumer relationship appears at the head of an arrow.
• The name of an input file appears at the tail of an arrow; the name of an output file, at the
head.
• Activation of a task by the shell appears as a line with no arrowheads.

The input script is as follows:

 # test.shell
 # declare tasks
 CONS := consumer PROD -
 PROD := producer CONS
 @ PROD

It must be understood that the input script itself does not establish which tasks are producers and which
are consumers - all that it does is to:

• Declare which symbols correspond to which tasks.
• Declare which symbols correspond to lists.
• Indicate which co-expressions should be substituted for the corresponding symbols when
populating the argument lists passed to tasks as they are loaded.
• Indicate which tasks are to be activated by shell.icn directly.

The producer.icn program produces string values:

 # producer.icn
 link Stream

13

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 procedure main(argv)
 local S
 # assume that first argument is a consumer or writable filename
 S := Stream(argv[1],"w")
 S.Put("I am the producer.")
 S.Put("What's So Funny 'Bout Peace, Love, and Understanding?")
 S.Close()
 # S.Close() performs cofail(S.Coexp())
 # for a co-expression Stream opened in "write" mode
 write("producer got resumed")
 end

When shell.icn interprets the test.shell script, PROD simply puts two values to the output Stream
(which transmits them, one at a time, to CONS) and closes the output Stream (which transmits failure
to CONS).

CONS consumes each value, wraps it in quotation marks, and puts it to an output Stream. Since
test.shell defines the second argument to be the string "-", the Stream() constructor opens the
standard output stream and instantiates the Streamf class.

 # consumer.icn
 link Stream
 procedure main(argv)
 local S_in, S_out
 # assume that first argument is a producer or readable filename
 S_in := Stream(argv[1],"r")
 # assume that second argument is a consumer or writable filename
 S_out := Stream(argv[2],"w")
 S_out.Put("I am the consumer.")
 while S_out.Put("\"" || S_in.Get() || "\"")
 S_out.Put("Consumer: no more input.")
 S_in.Close()
 S_out.Close()
 end

The output produced by "shell -i test.shell" is:

 I am the consumer.
 "I am the producer."
 "What's So Funny 'Bout Peace, Love, and Understanding?"
 Consumer: no more input.
 producer got resumed

The script would produce the same output if the "task activation" line were @CONS instead of
@PROD.

The resumption sequence is:

 SHELL_MAIN (which activates PROD)
 PROD (which transmits &null to CONS)
 CONS (which outputs "I am the consumer" and transmits &null to PROD)
 PROD (which transmits "I am the producer." to CONS)
 CONS (which outputs "I am the producer" and transmits &null to PROD)
 PROD (which transmits a the title of a song written by Nick Lowe to CONS)

14

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 CONS (which outputs the quote and transmits &null to PROD)
 PROD (which closes the output stream, transmit failure to CONS)
 CONS (which outputs "Consumer: no more input.", closes its input Stream,
 and exits, transmitting failure back to the PROD)
 PROD (which outputs "producer got resumed" and exits, transmitting
 failure back to CONS)
 CONS (which fails back to PROD)
 PROD (which fails to SHELL_MAIN)
 SHELL_MAIN

This sequence may be deduced by invoking shell.icn with the trace option, e.g.,

 shell -t -i test.shell

Tracing the StreamC Class

To demonstrate the tracing facilities provided by Stream.icn, substitute the following code for
producer.icn:

 link Stream
 global StreamC_trace
 procedure main(argv)
 local S
 if
 (type(argv[1]) == "string", argv[1] == "-t")
 then {
 StreamC_trace := "producer.icn"
 pop(argv)
 }
 S := Stream(argv[1],"w")
 S.Put("I am the producer.")
 S.Put("What's So Funny 'Bout Peace, Love, and Understanding?")
 S.Close()
 end

and change the task declaration for PROD to

 PROD := producer -t CONS

The output produced by "shell -i test.shell" becomes

 ______ (1) producer.icn: instantiating StreamC
 ______ (1) producer.icn: StreamC constructor: mode w activating p_coexp
 I am the consumer.
 ... coactrace: ______ (1) producer.icn is transmitting: "I am the

 producer."
 "I am the producer."
 ... coactrace: ______ (1) producer.icn received: &null
 ______ (1) producer.icn: StreamC.Put first activation produced &null
 ... coactrace: ______ (1) producer.icn is transmitting: "What's So

 Funny 'Bout Peace, Love, and Understanding?"
 "What's So Funny 'Bout Peace, Love, and Understanding?"
 ... coactrace: ______ (1) producer.icn received: &null

15

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 ______ (1) producer.icn: StreamC.Put first activation produced &null
 ______ (1) producer.icn: ____ StreamC.Close cofailing stream opened for w
 Consumer: no more input.
 producer got resumed

A wide video screen may be helpful when tracing.

Passing Structures as Data Values

To demonstrate one task may transmit structures to another, substitute the following code for
producer.icn:

 link Stream
 record data(one, two, three)
 procedure main(argv)
 local S_next, d

 S_next := Stream(argv[1], "w")

 d := data("SNOBOL", "Icon", "Unicon")

 S_next.Put(d)

 d := table("")
 d["first"] := "Ralph"
 d["last"] := "Griswold"

 S_next.Put(d)

 end

and substitute the following code for consumer.icn:

 link Stream
 procedure main(argv)
 local S_prev, d

 S_prev := Stream(argv[1], "r")
 d := S_prev.Get()

 write("First there was ", d.one)
 write("Then there was ", d.two)
 write("At last there is ", d.three)

 d := S_prev.Get()
 write("Many thanks to ", d["first"], " ", d["last"])
 end

The output becomes:

 First there was SNOBOL
 Then there was Icon
 At last there is Unicon

16

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 Many thanks to Ralph Griswold

The Client-Service Pattern

Service Tasks

A "service task" could be characterized as "a task that behaves as an instance of a class that has only
one method, which takes only one argument". This may be required when it is necessary to:

• Allow several tasks to access a single resource, such as an open file.
• Provide client tasks in several solutions with an integral unit of processing.
• Serve different numbers of clients when applying a task to different solutions.

Each time that a client resumes a service, the service yields control back to that client.
(Consequently, it is not necessary to specify the client in the service's task declaration in the input
script.) If the service is expected to produce a result, the service transmits the result when it resumes the
client.

A client should treat a service as a consumer to ensure that the service has been activated before the
client transmits values to the service. Therefore, when a client is loaded with an argument referencing a
task that is a service, it should call Stream() with a filemode of "w". A client task may use either
StreamC.Get() or StreamC.Put() to transmit data to the service and to receive data from it;
 Put() permits processing multiple values in a single call, whereas Get() is more convenient to
use when processing one value at a time.

Note well: Transmitting failure to a service task causes that task to terminate and yield control of
execution back to the parent (main) task. Therefore, unless this behavior is desired, a client task should
never invoke the Close() method on a service Stream. Services must terminate upon receipt of failure
to ensure that they work properly (i.e., that they will not participate in infinite failure) in a "recursive
invocation" context. (See "Recursive Invocation and Argument Substitution" below for an example of
recursive invocation of shell.icn.)

The service(callback,moreargs,source) Procedure

Stream.icn defines the procedure service(callback,moreargs,source) to ease
implementation of services.

• The source argument defaults to the value of &source at the time that service() is
called; if the program implementing the service must yield to other co-expressions before
invoking service(), it will need to save the original &source value and pass that value as
this argument if it is to behave properly.
• Once the service() procedure has been invoked, the value of source is maintained
by the procedure to reflect that &source for the last client task that activated the service task.
• The callback argument must be a string that names a function or must be a reference to
a function. The callback function must produce a result and must take at least one argument.
The first argument will be passed each result produced when source is resumed, and the
second argument will be passed the value of the moreargs argument. The result returned by
the callback function is transmitted back to source the next time that it is resumed.
• The service() procedure never returns.

17

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

The heart of the implementation of the service procedure is as follows:

 # invoke a callback function as a co-expression service
 procedure service(callback, moreargs, source)
 local failed, result
 \callback | fail
 # save the &source if it was not supplied as an argument
 /source := &source

 # repeat endlessly
 repeat {

 # transmit result to source, and get next operand from source
 # 1. if source transmits failure, then abort
 if
 not (
 result := if /failed
 then (result @ source)\1
 else cofail(source)\1
)
 then
 stop() # terminate task and yield control of execution
 # back to parent (main) task

 # 2. save the &source for the current resumption before
 # invoking the callback (in case the callback needs to resume
 # other services or co-expressions before returning)
 source := &source

 # 3. invoke callback to produce next result (or failure)
 if
 result := (/failed, (callback(result, moreargs))\1)
 then
 failed := &null
 else
 failed := 1
 }
 end

Applying Service Tasks

This example (testsvc.shell) demonstrates using two programs (named service.icn and s_file.icn) as
services. One service program (s_file.icn) has two clients (client.icn and service.icn) whereas the other
(service.icn) has only one client (client.icn). In the following diagram of the relationships among the
tasks, the service in a client-service relationship appears at the head of a dotted arrow:

18

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

The input script might read as follows. Notice that the system of tasks is declared and activated
twice; in the second declaration of the SERVICE task, different arguments is passed to the service.icn
program.

 # testsvc.shell
 # declare tasks
 OUTPUT := s_file - w
 CLIENT := client PROD SERVICE OUTPUT
 SERVICE := service -o OUTPUT my_reverse
 PROD := producer CLIENT
 # activate producer
 @ PROD

 # declare tasks
 OUTPUT := s_file - w
 CLIENT := client PROD SERVICE OUTPUT
 SERVICE := service -o OUTPUT my_map " " "_"
 PROD := producer CLIENT
 # activate producer
 @ PROD

OUTPUT and SERVICE are both services. Notice that @ PROD or @ CLIENT may be used to
activate the solution, but neither @ SERVICE nor @ OUTPUT will work.

Implementation of service.icn is much simpler given the definition of the service() procedure
in Stream.icn.

 # service.icn
 link Stream
 global logstream # optional stream for logging

 invocable all # do not discard any procedure names when linking;
 # this is necessary for string invocation

 procedure main(argv)
 local source := &source # save the first source

 # enable logging if applicable (if so, the -o option must appear
 # together with its value before the argument naming the
 # function to be executed)

19

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 if (type(argv[1]) == "string", argv[1] == "-o") then {
 pop(argv)
 logstream := Stream(pop(argv), "w") |
 stop("service.icn: could not open log Stream")
 }
 service(argv[1], argv[2:0] | &null, source)
 end

 procedure my_map(s, m)
 if (\logstream, type(m)=="list", type(m[1]) == type(m[2]) == "string")
 then
 logstream.Put("service: my_map("||image(s)||
 "," || (m[1] || "") || "," || (m[2] || "") || ")"
)
 /m := []
 return map ! ([s] ||| m)
 end

 procedure my_reverse(s)
 (\logstream).Put("service: my_reverse("||image(s)||")")
 return reverse(s)
 end

The s_file.icn program is a general-purpose file access service. The implementation for s_file.icn is as
follows:

 # s_file.icn - service to read or write files
 link Stream
 global S_f # file stream created for first argument
 procedure main(argv)
 local f # file produced by open()
 local source
 source := &source
 S_f := Stream ! argv[1:0] | stop("s_file.icn: cannot open file")
 if find("r", argv[2]) then
 service(S_in_func, &null, source)
 else
 service(S_out_func, &null, source)
 end

 procedure S_in_func()
 return S_f.Get()
 end

 procedure S_out_func(value)
 if S_f.Put(value) then
 return
 else
 fail
 end

The implementation for producer.icn has been presented above. The implementation for client.icn is
as follows:

20

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 # client.icn
 link Stream
 procedure main(argv)
 local S_in, S_out, S_service, data_in, data_service, data_item
 S_in := Stream(argv[1],"r")
 S_service := Stream(argv[2],"w")
 S_out := Stream(argv[3],"w")
 S_out.Put("I am the client.")
 while (data_in := &null, data_in := S_in.Get()) do {
 if data_service := S_service.Get(\data_in) then
 S_out.Put(data_service)
 }
 S_out.Put("client: no more input.")
 end

The resumption sequence interleaved with the output produced by "shell -i testsvc.shell" is

 SHELL_MAIN
 PROD CLIENT
 I am the client.
 SERVICE OUTPUT
 service: my_reverse("I am the producer.")
 SERVICE CLIENT OUTPUT
 .recudorp eht ma I
 CLIENT PROD CLIENT SERVICE OUTPUT
 service: my_reverse("What's So Funny 'Bout Peace, Love, and

Understanding?")
 SERVICE CLIENT OUTPUT
 ?gnidnatsrednU dna ,evoL ,ecaeP tuoB' ynnuF oS s'tahW
 CLIENT PROD CLIENT OUTPUT
 client: no more input.
 SHELL_MAIN
 PROD CLIENT
 I am the client.
 SERVICE OUTPUT
 service: my_map("I am the producer."," ","_")
 SERVICE CLIENT OUTPUT
 I_am_the_producer.
 CLIENT PROD CLIENT SERVICE OUTPUT
 service: my_map("What's So Funny 'Bout Peace, Love, and

Understanding?"," ","_")
 SERVICE CLIENT OUTPUT
 What's_So_Funny_'Bout_Peace,_Love,_and_Understanding?
 CLIENT PROD CLIENT OUTPUT
 client: no more input.
 SHELL_MAIN

One obvious question is, "Why not implement all consumers as services?" There are two reasons:

1. Service tasks that are supported by the service() procedure abort when failure is
transmitted to them. Consumer tasks need to be able to continue executing after they receive
failure so that a producer can transmit failure to indicate that there is no more input to process.

21

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

2. Services are slightly more tricky or cumbersome to write than consumers because consumers
do not need to track the first &source.
3. Consumers do not need to be written to accommodate callbacks, which can be an awkward
way to express many algorithms.
4. A consumer can treat the values coming from different producers differently. A service has to
respond the same way to the values that it receives regardless of the task that transmitted them.

The Queuing Pattern

Sometimes it is preferable to queue several results rather than switching tasks each time a result is
generated by a producer. For example, if a producer creates both a sequence of instructions and a
sequence of data, it may be preferable to queue the data required for each instruction in order to keep
the consumer clear on whether a value is an operand (put onto the queue) or an operator (transmitted to
the consumer when it is resumed). Alternatively, the task needing the data may not be the next
consumer in the pipeline, and using a queue may be more clear or efficient than passing the data
through the whole pipeline.

This example (test_queue.shell) provides a trivial demonstration of queuing using a list that is
accessible by all tasks. In the following diagram of the relationships among the tasks, reference to the
list is indicated by a dotted line, and numbers indicate the order in which the tasks are activated:

In the input script, the list symbol "LIST" is declared and supplied as an argument to each task that
needs to access it.

 # test_queue.shell
 list LIST
 PUT := queue_put LIST
 GET := queue_get LIST -
 @ PUT
 @ GET

The main task first activates the queue_put task, which puts two items to the list and then
terminates, yielding to the main task:

 # queue_put.icn
 link Stream

 procedure main(argv)
 local S_list

 S_list := Stream(argv[1])
22

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 write("I am queue_put.icn")

 S_list.Put("First string-value transmitted"
 , "Second string-value transmitted")
 end

Next, the main task activates the queue_get task, which reads the values from the list and puts them
to the output Stream:

 # queue_get.icn
 link Stream

 procedure main(argv)
 local S_list

 S_file := Stream(argv[2], "w")
 S_list := Stream(argv[1])
 S_file.Put("I am queue_get.icn")

 while (S_file.Put(S_list.Get()))

 S_file.Put("queue_get: S_list.Get has no more input")
 end

The resumption sequence interleaved with the output produced by "shell -i test_queue.shell" is:

 SHELL_MAIN
 PUT
 I am queue_put.icn
 SHELL_MAIN
 GET
 I am queue_get.icn
 First string-value transmitted
 Second string-value transmitted
 queue_get: S_list.Get has no more input
 SHELL_MAIN

Recursive Invocation and Argument Substitution

Sometimes a solution may be made clearer by including "subsolutions" into its composition. This is
done by writing the "supersolution" script to load shell.icn as one of the tasks. Furthermore, a
subsolution script may more readily be applied to multiple supersolutions if it has "substitutable
parameters" into which it may substitute arguments passed to it.

Argument Substitution

Substitutable parameters allow the user to reconfigure a input script without rewriting it. For
shell.icn input scripts, a substitutable parameter is a dollar sign followed by an integer. Arguments
supplied to shell.icn after the option values are substituted into the script in place of the substitutable
parameters. Therefore, when the test_subst.shell script:

 # test_subst.shell

23

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 list LIST
 PUT := queue_put LIST
 GET := queue_get LIST $1
 @ PUT
 @ GET

is invoked with the command:

 shell -i test_subst.shell OUT

shell.icn interprets the script as if it had been:

 # test_subst.shell, after argument substitution
 list LIST
 PUT := queue_put LIST
 GET := queue_get LIST OUT
 @ PUT
 @ GET

Recursive Invocation

When a supersolution script invokes a subsolution script, shell.icn invokes another instance of
shell.icn as a task. This example demonstrates:

• A supersolution invoking shell.icn with a subsolution script
• Parameter substitution in the subsolution script
• Streaming an input script to the subsolution.

24

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

The subsolution is realized by the test_subst.shell script, presented above. The supersolution is
realized by the following input script, which supplies a task reference (IN) as the input-script option
value, and defines the first non-option argument value to be another task reference (OUT):

 # super_subst.shell
 DATA := shell -i IN OUT
 IN := t_cat test_subst.shell DATA
 OUT := s_file - w
 @ DATA

The t_cat.icn program concatenates one or more input Streams to an output Stream:

 # t_cat.icn
 link Stream
 global StreamC_trace

 procedure main(argv)
 local S_in, S_out, inp, outp
 local usage
 usage := "usage: t_cat [-t] <infile>{1:N} <outfile>"

 # handle tracing option
 if (type(argv[1]) == "string", argv[1] == "-t")
 then { StreamC_trace := "t_cat.icn" ; pop(argv) }

 # pull the output task or file off the end of the arg list
 outp := pull(argv)
 0 == *argv & stop(usage)
 S_out := Stream(outp, "w") | stop(usage)

 # send each input task or file (left to right) to output
 while inp := pop(argv) do {
 S_in := Stream(inp,"r") | stop(usage)
 while S_out.Put(S_in.Get())
 }
 # S_out.Close() will cause infinite failure
 # if this task is the input Stream for shell.icn
 stop() # this is required to prevent infinite failure
 # if this task is the input Stream for shell.icn
 end

The reason that including S_out.Close() or omitting stop() would cause infinite
failure when streaming input to shell.icn is under investigation; perhaps it is related to the fact that
shell.icn does not use monitor_task() to protect reading of the input script.

The interleaved resumption sequence and output produced by this system of solutions is:

 supersolution.SHELL_MAIN
 subsolution.SHELL_MAIN
 supersolution.IN
 subsolution.SHELL_MAIN
 subsolution.PUT
 I am queue_put.icn
 subsolution.SHELL_MAIN

25

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 subsolution.GET
 supersolution.OUT
 I am queue_get.icn
 subsolution.GET
 supersolution.OUT
 First string-value transmitted
 subsolution.GET
 supersolution.OUT
 Second string-value transmitted
 subsolution.GET
 supersolution.OUT
 queue_get: S_list.Get has no more input
 subsolution.GET
 subsolution.SHELL_MAIN
 supersolution.SHELL_MAIN

In this solution, the IN task (t_cat.icn) simply copies test_subst.shell to produce an "input-script
Stream" for the recursive invocation of shell.icn. Note, however, that one might make nontrivial
replacements for t_cat.icn to translate arbitrary data into an input-script Stream.

The Preprocessor Pattern and a Command Line Interface Program

A "preprocessor" is a program whose response to input is to generate the input for another program.
A preprocessor task could be used to generate an input script for a recursive invocation of shell.icn.
Indeed, t_cat.icn in the previous example served as a trivial preprocessor, which was invoked via an
additional script, super_subst.shell.

To relieve the user of the need to provide an additional script file in order to specify that shell.icn
should invoke a preprocessor, the -p invocation option was implemented. The usage is:

 shell -p <preprocessor> <optional_arguments>

The preprocessor must be written to accept:

• As its first argument, a task that consumes strings
• As its second argument, a list that may hold results (the "result list")
• As arguments 3 to 0, the optional preprocessor arguments

The preprocessor must produce input script lines as strings since:

• The consumer is a recursive invocation of shell.icn whose -i option value is the preprocessor
task
• The token() function of shell.icn relies upon string scanning functions

The script produced by the preprocessor can reference the result list using the $1 substitutable
parameter.

When invoked with the -p option, shell.icn creates an internal equivalent of an input script:

 list _LIST_
 SCRIPT := <preprocessor> _SHELL_ _LIST_ <optional_arguments>
 SHELL := shell -i _SCRIPT_ _LIST_
 @ _SHELL_

26

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

Thus, given the invocation:

 shell -p ush -

shell.icn creates the equivalent of the script:

 list _LIST_
 SCRIPT := ush _SHELL_ _LIST_ -
 SHELL := shell -i _SCRIPT_ _LIST_
 @ _SHELL_

This script might be represented diagrammatically as:

The dashed line represents invocation of ush.icn via the internal script, and ???? represents any task
or tasks that may be loaded as specified in the script which ush.icn emits and that may reference
LIST via the $1 parameter.

For this example, ush.icn is a rudimentary "command-line interface" (CLI). A CLI is, in essence, a
specialized preprocessor that is oriented toward having the user interactively provide input, specify
where to get input, or both. The input grammar for shell.icn is not terse enough for a CLI because it
favors flexibility in solution definition at the cost of needing to enter most symbols several times while
defining a solution. Eventually, the ush.icn program could be expanded into a full-blown CLI program
(see "Possible Future Enhancements" below), but at present it has only three functionalities:

1. If ush reads a line from the standard input that begins with the word "exit", ush terminates.
2. Else if the line read begins with a "." followed by the name of a file, that file is copied to the
output Stream.
3. Else the line is copied verbatim to the output Stream.

Here is a brief interactive session, where "ush: " is the prompt for input and where values typed by
the user appear in italics after the prompt:

 shell -p ush -
 ush: . test.shell
 I am the consumer.
 "I am the producer."

27

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

 "What's So Funny 'Bout Peace, Love, and Understanding?"
 Consumer: no more input.
 producer got resumed
 ush: PUT := queue_put $1
 ush: GET := queue_get $1 -
 ush: @ PUT
 I am queue_put.icn
 ush: @ GET
 I am queue_get.icn
 First string-value transmitted
 Second string-value transmitted
 queue_get: S_list.Get has no more input
 ush: exit

Notice that, in this example, _LIST_ is used by the tasks in the generated script; it does not hold
results for ush.icn to read, since ush.icn does not yet have code to read those results.

The essence of the ush.icn program is as follows:

 link Stream
 link scan
 procedure main(argv)
 local S_in, S_out, S_list, S_src, inp, outp, result_list,
 line, ws, quoted, usage
 usage := "usage: ush <outfile> <result_list> <infile>{1:N}"
 ws := ' \t'
 argv[2] | stop(usage)
 argv[3] | (argv[3] := "-")

 # open the consumer of input-script strings
 outp := pop(argv)
 S_out := Stream(outp, "w") | stop(usage)

 # Note that ush.icn does not (yet) do anything else
 # with the next argument once the Stream has been opened.
 result_list := pop(argv)
 S_result := Stream(result_list, "r") | stop(usage)

 while inp := pop(argv) do {
 S_in := Stream(inp,"r") | stop(usage)
 S_in.Data() === &input & writes("ush: ")
 # prepend a space so the "tab(many(ws))"
 # will always succeed at the beginning of a line
 # append " EOL" to line because "s ? balq(ws)" fails
 # if s has no spaces
 while line := S_in.Get() do {
 " " || line || " EOL" ?
 if (tab(many(ws))
 , ="."
 , tab(many(ws))
 , quoted := tab(balq(ws))
 , quoted := (quoted[1:2] == quoted[-1:0] == "\""
 , quoted[2:0]
) | quoted

28

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

)\1 & S_src := Stream(quoted, "r")
 then
 while S_out.Put(S_src.Get())
 else if
 (tab(many(ws)) | 1 , ="exit")
 then {
 S_out.Put("_HALT_")
 stop()
 }
 else
 S_out.Put(line)
 S_in.Data() === &input & writes("ush: ")
 }
 }
 S_out.Put("_HALT_")
 stop()
 end

Performance Measurement

An informal test was run to compare the performance of the shell with a multiprocess pipe/filter
solution. (Perftest_archive.sh in the second appendix can be used to extract the files needed to reproduce
the test). Measurements were made on a Debian Sarge Linux installation a 650 MHz AMD K7 (Athlon)
processor, 512 kb cache, and a gigabyte of memory.

Two programs, perfprod.icn and perfcons.icn, were used to pass about 14 million characters of data
from one program to another, varying the number of bytes passed per context switch. For 100,000,
10,000, and 1,000 bytes per context switch, the shell was seven-fold faster than the multiprocess
solution, regardless of whether data Put to the pipe was flushed from the buffer after each Put. For
100 and 50 bytes per context switch, shell performance shrunk to about four-fold faster and two-fold
faster than the multiprocess solution, respectively; for 10 bytes per context switch (and below),
performance was about equal.

These results, albeit obtained under contrived conditions, seem to suggest that it is likely that
composing multi-program solutions in the shell would offer at least a modest performance advantage
over multi-process solutions under most real-world conditions.

Limitations and Future Enhancements

Cyclic Relationships may have Unexpected Behavior

One can imagine "cyclic producer-consumer graphs" (and write corresponding input scripts);
however, these might present significant problems. For example, suppose that A is a producer for B, B
is a producer for D, A is a producer for C, and C is a producer for D.

29

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

If D resumes B for a result, B resumes A, A resumes C, and C resumes D, then the "resumption
graph" looks as follows:

The difficulty with this is that D is defined to be a consumer of values from both B and C, yet when
D resumes B for a result, it gets the result produced by C instead of a result produced by B. Unless D is
a generic service that does one thing regardless of which client resumes it (such as s_file.icn), the
programmer of D may expect resumption of B to produce a result that B produced instead of a result
produced by C. One way around this problem is to interpose a list:

Enhancements to shell.icn and Stream.icn

shell.icn is a proof-of-concept implementation. Some enhancements that might make it more
generally useful are:

• Employ a more sophisticated lexical analyzer and parser. The rudimentary lexical analyzer
(the token() procedure) passes strings to the parser, rather than passing symbol-value
pairs in the manner of the lex family of analyzers; for only this reason, the strings
"_NEWLINE_" and "_HALT_" cannot be used for task or list symbols.
• Modify the token() procedure to analyze Streams that may produce non-text values, so
that preprocessors could produce input scripts containing other values such as references to
tasks and data structures.

30

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

It would probably be best to focus on adding only features that make the shell significantly more
useful.

Additional Programs to Enhance Usability of the Shell

The following programs might make the shell a tool that is more generally applicable to problems
that a Unicon programmer may be solving:

• Define a protocol for using the result list.
• Expand the ush.icn program to permit the user to specify a search path for icode files to load
as tasks, perhaps via an environment variable, a command-line option, or both.
• Add "here document" capability so that scripts can specify standard input to the solutions
that they define.
• Enhance the "." operation to permit passing of arguments to the included script.
• Permit enhanced notation to reduce or make easier the use of explicit task and list symbols.
Perhaps the first three example solutions might be expressed as:

 producer | consumer -
 OUT := s_file - w ;

 producer | { { client ..| service -o OUT my_reverse } ..| OUT }
 { queue_put .. LIST } ; { queue_get .. LIST }

• Add keywords for iteration and conditional execution to control flow based on the contents of
the result list.
• Create an "adapter" program that could load any existing Unicon program as a filter task for
use by the shell. This would particularly valuable because it would enable programs from the
Icon Programming Library to be used without modification.
• Create "adapter" programs to link with procedure definitions from the Icon Programming
Library; such programs would function as service tasks so that the linked procedures would be
available to other tasks.
• Create an "adapter" program that could use the pipe() or system() built-in
functions to start a "foreign" (non-Unicon) program as a separate process. This program would
allow other tasks to exchange text values with the other process.

Final Thoughts

Practical applications for a Unicon shell might be large-scale, runtime-configurable software systems.
For example, imagine a cross-compiler with several target-platforms. The user could configure the
output via a script so that output tasks appropriate for the chosen platform would be loaded and
executed. Adding support for a new platform would simply entail writing and testing a few tasks and
the scripts that invoke them. Contrast this with having to add a new invocation option to a large
program for each new target program, and how a Quality Assurance Department would deduce what
functionalities had been changed and would need to be tested or retested.

The shell presented here meets the requirements defined by the author and demonstrates that
implementation of a shell for Unicon is both practical and relatively simple. One limitation of this work
is that it only addresses the requirements of one programmer; if more programmers' insights become
available, a more general set of requirements may be defined, which could in turn give rise to a more
generally useful shell program.

31

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

Acknowledgments

Definition and implementation of co-expressions in Icon was a product of Steve Wampler's Ph.D.
research under Ralph Griswold. The same is true for definition and implementation of the transmission
of values between co-expressions. MT Icon was a product of Clint Jeffery's Ph.D. research with Ralph
Griswold.

Steve raised a question that suggested the Client-Service pattern demonstrated in testsvc.shell.

Both Clint and Steve provided rapid (and at times crucial) assistance during the research and
development of the code for Stream.icn and shell.icn; both provided critical review for this report.

The Stream() class constructor takes some inspiration from an Icon implementation exercise
that proposed creating a stream Icon datatype [10]. Although, in principle, the Stream class reported
here has some similarities with the suggested stream datatype and was intended to solve some of the
same problems, it differs in the operations implemented and avoids changing the implementations of the
language and the virtual machine.

References

1. http://en.wikipedia.org/wiki/Unix_philosophy
2. http://en.wikipedia.org/wiki/Pipes_and_filters
3. http://en.wikipedia.org/wiki/Interprocess_communication
4. Knuth, Donald, 1968. The Art of Computer Programming, Volume 1. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc., Section 1.4.2.

5. Wampler, Steven B., and Griswold, Ralph E., 1986. Co-Expressions in Icon. Computer Journal 26:
72-78.
6. Griswold, Ralph E. and Griswold, Madge T., 1996. The Icon Programming Language, 3rd edition. San
Jose, California: Peer-to-Peer Communications, pp. 118-121.

7. Jeffery, Clinton L., 1997. The MT Icon Interpreter. (Icon Project Document 169),
http://www.cs.arizona.edu/icon/docs/ipd169.htm
8. Clinton Jeffery, Shamim Mohamed, Robert Parlett, and Ray Pereda, manuscript in preparation.
Programming with Unicon.

9. http://unicon.sourceforge.net/
10. Griswold, Ralph E., and Griswold, Madge T., 1986. The Implementation of the Icon Programming
Language. Princeton, New Jersey: Princeton University Press, p. 310.

Appendices

Please view the first appendix on-line at http://unicon.org/generator/v2/shell_appendix_sh.html.

The second appendix is available at http://unicon.org/generator/v2/perftest_archive.sh.

32

, 11/22/06
vim: : set ai sw=2 ts=2 expandtab syntax=html :

http://en.wikipedia.org/wiki/Unix_philosophy
http://unicon.sourceforge.net/
http://www.cs.arizona.edu/icon/docs/ipd169.htm
http://en.wikipedia.org/wiki/Interprocess_communication
http://en.wikipedia.org/wiki/Pipes_and_filters

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

FUN WITH CO-EXPRESSIONS, PART THREE:

CO-EXPRESSIONS AS CLOSURES
STEVE WAMPLER

closure is a representation of a function along with the lexical environment in which the function
was created[3]. More importantly, a closure represents a function that can be created
dynamically. Furthermore, the definition of this function may reference variables in the

surrounding lexical context. Closures can be found in a large number of high-level languages and is a
particularly valuable tool found in many functional programming languages. As an example, the
following pseudocode is a solution to a programming challenge [4]:

Function genAcc(n) {
 return newFunction(i) {
 return n := n + i
 }
 }

Function genAcc returns a dynamically created function that computes the sum of the value of its
argument i along with the value passed originally to genAcc as n. It also increments the value of n.
Continuing this example:

x := genAcc(3)
y := genAcc(5)
write(x(4),” “,y(4))
write(x(2),” “,y(3))

would output:

7 9
9 12

Another way to view a closure is in terms of binding-times. The above closure can be thought of as
defining a new function of two parameters n and i where the value of n is bound at the time the
function is defined while the value of i is bound when the function is invoked. In the above pseudocode,
the parameter n is implicitly available in the closure. It is also possible to define a closure mechanism
in which the early-binding of function parameters is explicitly specified.

Co-expressions as closures

It turns out that co-expressions are a natural implementation of closures. By definition, a co-
expression has implicit access to the variables found in the surrounding lexical context. A first step,
then is to translate the above pseudocode into a near Unicon form that binds the value of n as the co-
expression is defined.

33

a

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

procedure genAcc(n)
 C := create co-expression referencing n
 return C
end

Each call to genAcc() produces a co-expression where the value of n is bound to the argument to
genAcc. This provides the early binding needed on n.

All that needs to be done now is to write the co-expression so each activation behaves as one would
expect a function call to behave. That is, the co-expression must accept input through a parameter and
produce the desired accumulation on n.

The solution is to take advantage of the explicit messaging capability that is available when viewing
co-expressions as coroutines. There are several key aspects using co-expressions as coroutines that play
a role here:

● All expression evaluation in Unicon (and Icon) can be thought of as being performed inside a
co-expression. In particular, it’s perfectly reasonable to think of the evaluation of a Unicon
program as initiating from:

 @(create main(args))

● Every co-expression can explicitly activate any other co-expression, including the one that
activated it. The keyword &source provides convenient access from the current co-expression
to its activator.

● You can pass a value from one co-expression to another through explicit activation. So
outValue@&source passes the value of outValue to the source co-expression.

● Since evaluation of a co-expression pauses at the point of explicit activation and resumed
from that point, any value passed through explicit activation of the paused co-expression
becomes the result of that paused evaluation.

The last two points can be confusing but, when combined, mean that the expression:

inVal := outVal@&source

does the following:

● Whenever outVal@&source is evaluated, the value of outVal is passed to the activating
co-expression.

● Execution pauses in this co-expression while the activating co-expression is evaluated.

● When execution resumes in this co-expression, any value explicitly passed to it is promptly
assigned to inVal.

34

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

This behavior is exactly what is needed to implement the target closure. The missing co-expression
can be written as:

C := create while i := n@&source do n +:= 1

Only one problem remains. The co-expression C, when created, is paused at the start of the
expression. This isn’t what is desired here, as any value passed in on activation will be discarded.
Instead, the co-expression needs to be pre-evaluated so it is paused waiting for a new value to assign to i.
An initial activation of C will evaluate C to the activation of &source, leaving the co-expression paused at
the desired point. (This first activation of &source receives the initial value of n from C, but that value
can simply be ignored.)

Interestingly, this initial activation has the effect of rotating the three bullet points above to read:

● Execution pauses in this co-expression while the activating co-expression is evaluated.

● When execution resumes in this co-expression, any value explicitly passed to it is promptly
assigned to i.

● Whenever n@&source is evaluated, the value of n is passed to the activating co-expression.

So the final Unicon/Icon form for producing the target closure becomes:

procedure genAcc(n)
 C := create while i := n@&source do n +:= 1
 @C # position C to accept value for i
 return C
end

(the three executable lines could be combined into a single line at the expense of clarity, of course.) A
simple main procedure to test the above code is:

procedure main()
 x := genAcc(3)
 y := genAcc(5)
 write(4@x,” “,4@y)
 write(2@x,” “,3@y)
end

which produces the same output as the original pseudocode.

Strictly speaking, this Unicon code is only a partial solution to the actual programming challenge. The
challenge also requires that the invocation of the generated operation be syntactically identical to
‘normal’ function invocation. The syntax for activating a co-expression does not meet that requirement.

A template for building closures

The above example provides a foundation from which it is possible to derive a generic template that
can be used to build arbitrary closures. In near-Unicon, this template may be written as:

35

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

procedure mkClosure(eb_params)
 local C, lb_param
 C := create while lb_param := result@&source do {
 Actions computing result from eb_params
 and lb_param
 }
 @C # Position C to accept lb_param
 return C
end

Here, eb_params is the set of closure parameters that are to bound to values when the closure is
defined, and lb_param holds the (single) parameter bound when the closure is invoked. The previous
example follows this template but uses the variable n as both the early bound parameter and as the
result.

This template works fine for closures where there is a single late-bound parameter, but what about
closures requiring more than one such parameter? Only a single value can be passed to a co-expression
using explicit activation but this value can, of course, be a structured value. So for example, to invoke a
closure with the three late-bound parameters 3, 4, and 5, one could write:

[3,4,5]@C

and use list subscripting inside the closure action to reference the individual parameters.

This use of a list to pass values into a co-expression presents an unappealing syntax. It would be nice
if co-expression activation had an alternative syntax as:

 C(input_params)

(This syntax would also permit a fully-compliant solution to the above programming challenge!). In
its simplest form, this syntax could be automatically translated into [input_params]@C. Other,
more sophisticated implementations are also possible, but would require additional support for accessing
input values within a co-expression.

There are, of course, tradeoffs to consider. While the above proposed syntax does provide a clean
means of passing multiple values into a co-expression, it also hides the fact that a co-expression is
involved in the control flow at this point. (Some people may consider that a positive change.) If the
proposed operator overloading implementation is extended to support the procedure call operation then
perhaps that might provide a convenient means of experimenting with this alternative syntax prior to
committing to integrating it into the language. Also, this syntactic alternative adds pressure for adding
support for more conveniently handling multiple input values within a co-expression definition,
increasing the complexity of the language.

36

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

All of the examples shown here have encapsulated the co-expression creation in a separate procedure.
While this helps clarify the closure’s definition by constraining and identifying the early-bound
parameters, there is no technical requirement imposing this encapsulation. For example, the following
code is equivalent to the previous example:

procedure main()
 local n
 n := 3
 @(x := create while i := n@&source do n +:= i)
 n := 5
 @(y := create while i := n@&source do n +:= i)
 write(4@x,” “,4@y)
 write(2@x,” “,3@y)
end

This works because every co-expression captures a snapshot of the environment in which it is created, so
each co-expression in the above code retains its own copies of n and i.

Other approaches

 Co-expressions are not the only way to express closures in Unicon. The Unilib[5] library includes a
Closure class that provides an alternative approach. For example, using Closure, the previous
pseudocode example can be written as:

procedure genAcc(n)
 return Closure(accum, [n])
end

procedure accum(n, i)
 return n[1] +:= i
end

An example main program using the above is:

procedure main(args)
 x := genAcc(3)
 y := genAcc(5)
 write(x.call(4),” “,y.call(4))
 write(x.call(2),” “,y.call(3))
end

this alternative technique for generating Closures will be covered in depth in another article.

37

mailto:3@y
mailto:4@y

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

References

1. Wampler, Steve, “Fun with co-expressions, part one”, The Generator, Vol. 1, No. 1, 2004, pp 8-9.

2. Wampler, Steve “Fun with co-expressions, part two”, The Generator, Vol. 2, No. 1, 2006, pp 16-
24.

3. See http://en.wikipedia.org/wiki/Closure_%28computer_science%29.

4. This example appears at http://www.paulgraham.com/icad.html, with sample solutions in a variety
of languages at http://www.paulgrahm.com/accgen.html.

5. See http://tapestry.tucson.az.us/unicon.

38

http://tapestry.tucson.az.us/unicon
http://www.paulgrahm.com/accgen.html
http://www.paulgraham.com/icad.html
http://en.wikipedia.org/wiki/Closure_(computer_science)

THE GENERATOR

VOL 2. NO 2.
DECEMBER MMVI.

INTEROPERATING WITH PHP

PHP stands for Perl Hypertext Processor. It is a popular way of introducing dynamic server-side
behavior into a webpage, easier than using CGI or a servlet engine. PHP programs mostly look like
HTML documents with some dynamic elements. Of course, PHP can't do everything that Icon and
Unicon can do, and there are times when it is desirable to use both.

There are two ways that PHP and Unicon can interoperate: a PHP program can invoke an external
program (such as an Icon or Unicon program), or a Unicon program can write out PHP and invoke the
php translator as a postprocessor. Invoking Unicon from PHP looks like

passthru(“/your-path/your-unicon-program”);

This is a PHP statement. While the Unicon program should write out HTML, it is not a CGI and
should not expect a CGI environment. In order to use PHP from within a Unicon CGI script, you will
need to have a PHP implementation which supports a php standalone executable, not just a PHP that
runs built-in to your web server. For example, your machine might have a /usr/bin/php. In that
case, using PHP in your CGI is simple, just open a pipe for writing, and write your output to the pipe.

UNDERDOCUMENTED UNICON

Much of what is underdocumented is that way for a reason: just because it is in CVS doesn't mean its
design is finished or that its implementation is bug-free. For example, Unicon's CVS has substantial
Voice Over IP and Pattern Matching facilities, but they are underdocumented on purpose, since they are
likely to change.

One feature in Unicon that probably isn't in Icon is this: key(r) generates the field names of record r.
There is already a function fieldnames() for this, the reason to extend key() is to increase the
polymorphism between records and tables, so that heterogeneous data structures may contain either (or
a mixture of both). Another recent tidbit is that pull(L, n) pulls/removes the last n elements from a list
L. This is liable to be much faster than executing a loop that calls pull() many times.

The final feature for this issue is in the graphics subsystem. Traditional Icon graphics facilities
report keyboard keys as strings, and mouse presses, drags, and releases as small negative integers. This
input model was optimized for simple applications in the late 1980's where minimizing the network
consumption (under the X Window System) was a major criterion. It works for a majority of GUI
applications, but some programs need lower level input control, notably video games.

Unicon includes an attribute named inputmask that allows an application to request additional types
of window input events. The attribute takes string values. The letter “k” requests keyboard release
events (in addition to the press events that are reported normally). The letter “m” requests mouse
motion events, even when no mouse button is being dragged. The letter “c” requests window closure
events to be reported.

39

	In this issue:
	Statement of Purpose
	Printing Instructions
	Call for Papers
	Editorial Board
	Typesetting
	Publisher
	Ralph Griswold's Legacy
	Unicon Project Moves North
	A Unicon Shell
	Fun with Co-expressions, part three:
	Co-expressions as Closures
	Interoperating With PHP
	Underdocumented Unicon

