
Merr User's Guide

CLINTON L. JEFFERY

New Mexico State University

je�ery@cs.nmsu.edu

July 25, 2002

Introduction

Merr (pronounced \mare", from \meta error generator") is a tool that generates

an error message function yyerror() usable with Berkeley YACC, AT&T YACC,

or Bison. Merr can generate the error message function for either ANSI C/C++

or the Icon programming language [Gris97]. The Merr tool can be downloaded

from http://unicon.sourceforge.net/merr/. This document is the primary user's

guide and reference for Merr. A separate document [Je�02] describes Merr's

underlying principles and motivation. You should read that document if you

want to port Merr to work with other parser generators, implement features

similar to Merr in your own tools, or better understand why Merr is superior to

the old way of generating syntax error messages.

This document assumes full familiarity with the YACC family of tools. The

term YACC will henceforth be used to denote the union of: AT&T YACC,

Berkeley YACC, Bison, and compatible tools. If you are not familiar with

YACC, you should go read [Levi92] or any of several other books or papers that

describe it in detail.

Reasonable YACC applications supply a yyerror() function to override the

default generic syntax error message and provide a useful message. Minimally,

most YACC applications use yyerror(s) to augment the default message with

the �lename, line number, and token at which the error was discovered.

Merr is for YACC compiler writers who want to do better than this. A

strong case has been made that compiler error messages should be targeted at

nonexperts, and that improved error messages correlate to better programmer

performance [Brow83], [Shne82]. A good summary of compiler error message

design can be found in [Horn74].

With the Merr tool, you present example errors as code fragments, and sup-

ply corresponding diagnostic messages. Merr invokes your compiler separately

on each example error to extract the parse state and input symbol at the time

1



the syntax error occurs. This declarative speci�cation of example errors is in-

dependent of which LR parser implementation is in use.

The Merr Command Line

Merr is invoked from the directory in which the compiler is built, with the

following command line arguments and options.

merr [-yYB] [-s make] [-o msgfile] compiler [target]

where compiler is the name of the compiler for whom error messages will be

generated, and target is the source �lename that the errant programs will be

written to and compiled from, defaulting to m err.c (or m err.icn)
Merr executes a system command to rebuild the compiler in order to create

its error message table. The default command is \make compiler". The -s
option overrides this default, as in the line:

merr -s ”make all” mycc bug.c

Merr writes the error message table and yyerror() function to a �le named

yyerror.c (or .icn) by default. A \-o" option directs Merr to write the �le with

a di�erent name.

Command line options -y, -Y, and -B direct Merr to generate compatible

C yyerror() functions for three popular C/C++ YACC implementations (the

default is to generate a yyerror() function for Icon/Unicon). For AT&T YACC

and Bison, Merr writes a header �le yyerror.h that de�nes a macro to add the

parse state information to the yyerror() function, appropriate to each version

of YACC. This header �le must be included in the YACC speci�cation (.y) �le

and its generated y.tab.c �le. Figure 3 shows the command line options and

corresponding yyerror.h contents.

-B Bison. #de�ne yyerror(s) yyerror(s,yystate)

-Y AT&T YACC. #de�ne yyerror(s) yyerror(s,yy state)

-y Berkeley YACC. No yyerror.h required.

Figure 1: Options handle di�erences among C YACC implementations.

To port to another LR parser generator, examine the generated parser to

identify the variable holding the parse state and modify the yyerror() macro.

Error and Message Speci�cation

Rather than introduce a myriad of tiny �les, Merr uses a single �le named

meta.err that contains all error fragments and their corresponding messages.

2



The �le format is a sequence of code:::diagnostic pairs, where code can be one

or multiple lines. The code fragment to generate an error is usually small, but

must include as much context (previous declarations, control structures, and so

forth) as is necessary to put the parser into the state for which the diagnostic

message is to be produced. The diagnostic error message is normally a single

line but is extended when a line ends with a backslash. The following are some

example error fragments and associated messages:

int mainfg ::: parenthesis or semi-colon expected
int x y; ::: missing comma in variable list
char () f g ::: function name expected
int a[] = f1,2; ::: unclosed initializer
struct foo
int x;
::: missing f after struct label

The number of such error fragments may grow quite large. A lazy compiler

writer can create fragments on a demand basis, starting from a generic GCC-

style error message and adding more speci�c diagnostics as new parse states are

identi�ed by errant programs. Alternatively, an initial set of error fragments

can be created by studying the grammar and writing as many errant fragments

for each production rule as possible. The important thing is that once a set of

error fragments is written, changes in the grammar that change the parse state

integers no longer require manual reexamination in order to avoid incorrect error

messages.

Merr's version of yyerror()

The Merr program generates a yyerror() function with the following pseudo-C

template:

void yyerror(char �s, int parse state)
f

if (yyerrors++ > yymaxerrors)
stop(”too many errors, aborting”);

if (!strcmp(s, ”syntax error”))
s = yyerrmsg[parse state, yychar];

fprintf(stderr, ”%s:%d: # n”%s n”:%snn”,
yyfilename, yylineno, yytext, s);

g

The table yyerrmsg[] is the key component that maps the parse state to

the most speci�c diagnostic message available. The table is sparse, and is not

3



really represented using a two-dimensional array, so the above pseudocode is a

simpli�cation. In reality the parse state subscript looks up a union which may

contain (a) no diagnostic, (b) a single error message to be used irrespective of

the input token, or (c) a default message and a sparse array (with lookups based

on yychar) of custom messages for speci�c input tokens.

Error Message Defaulting

If a parse state is not found in the message table, the default error message

(usually \syntax error") is printed out with current line number and token

information. If the parse state is present in the table, there may be a shared

message (independent of the input token) or individual messages for speci�c

input tokens.

If only one error fragment produced a given parse state, the yyerrmsg[]
table returns that diagnostic in that parse state for all possible input tokens. If

multiple fragments fail in the same parse state, the �rst one in the speci�cation

is used as the default, and the second and subsequent messages for that parse

state override that default only for the input token appearing in their error

fragment. If more than one fragment fails on identical parse states and input

tokens, a warning message is produced and only the �rst one is used.

The default behavior makes it very easy to \grow" an error message set from

free minimal GCC-style messages to reasonable parse state-based messages to

good messages that consider the current token. Nothing prevents the Merr user

from producing incorrect messages, or failing to produce an error fragment and

custom message that will describe a particular error; the Merr tool just makes

the job easier.

Conclusion

Merr is a simple, elegant solution to a common problem encountered in writing

compilers using YACC. Using Merr allows you to improve your syntax error

messages by supplying examples. Merr is robust in the presence of changes to

the grammar; just rerun it whenever the grammar is changed.

Acknowledgements

This work was supported in part by the National Library of Medicine, Special-

ized Information Services Division. The modi�ed version of Berkeley YACC,

called iyacc, was implemented by Ray Pereda. It is part of the Unicon source

distribution, and is also usable with Icon. It is also available direct from its

4



author; his e-mail is raypereda@hotmail.com. The example of supplying an er-

ror message in an error production via a global variable was due to Saumya

Debray by personal correspondence. Alexandre Petit-Bianco provided a helpful

clari�cation of the GCC Java example. Mikhail Auguston, Kay Robbins and

Saumya Debray provided helpful comments on this paper.

Appendix: Example Merr Speci�cation File

This is an example Merr speci�cation for some syntax errors in the Icon pro-

gramming language. It is a subset of the Merr speci�cation used by the Unicon

programming language compiler.

procedure main()
every x do f g

g

end
::: too many closing curly braces

global::: unexpected end of file
global x y::: invalid global declaration
global x, , y::: missing identifier
procedure p(x) end::: missing semicolon
link procedure p(x)
end
::: link list expected
invocable procedure p(x)
end
::: invocable list expected
local x
::: invalid declaration
procedure main()

a +
end
::: missing or invalid second argument to +
procedure main()

a *
end
::: missing or invalid second argument to *
procedure main()

a !
end
::: missing or invalid second argument to !

5



procedure ()
end
::: procedure name expected
procedure p(1)
end
::: parameter name expected
procedure p(x,)
end
::: parameter name expected
procedure p(x)
global x
end
::: semicolon expected
procedure p(x);
global x
end
::: invalid procedure body
procedure p()
!
end
::: invalid argument to unary !
procedure p()
create
end
::: invalid create expression
procedure p()
f

end
::: invalid compound expression
procedure p()
if
end
::: invalid if control expression
procedure p()
case
end
::: invalid case control expression
procedure p()
while
end
::: invalid while control expression

6



procedure p()
until
end
::: invalid until control expression
procedure p()
every
end
::: invalid every control expression
procedure p()
repeat
end
::: invalid repeat control expression
link x+
procedure p()
end
::: invalid link declaration
procedure p
write()
end
::: missing parameter list in procedure declaration
procedure p()
local ”hello”
end
::: invalid local declaration
procedure p()
initial ]
end
::: invalid initial expression
procedure p()
if (1) f
hello
g

end
::: missing then
procedure p()
write(p()
hello
end
::: unclosed parenthesis
procedure p()
local l := []

7



end
::: illegal assignment in declaration
procedure p()
if na.b n— (na.b & c(e) == ”nt” then f

end
::: unclosed parenthesis
procedure main()

case x of f
y:

f(); g()
g

end
::: malformed case expression
procedure main()

case x of f
case y:

f()
g

end
::: missing ”of” in case expression
procedure main()

while x do f x
end
::: a while loop is missing g somewhere before ”end”
procedure p()
initial f

if foo then f

g

end
::: an ”initial” clause is missing g somewhere before ”end”
procedure dbdelete(db, filter)
sql(db, ”DELETE FROM ” —— blah blah —— filter)
end
::: unclosed literal or missing operator
procedure p()
s —— := k
end
::: missing operand after —— or illegal space inside ——:=

8



References

[Brow83] Brown, P. Error messages: the neglected area of the man/machine

interface? Communications of the ACM, 26(4):246{249, 1983.

[Gris97] Griswold, R. E. and Griswold, M. T. The Icon Programming Lan-

guage, 3rd edition. Peer-to-Peer Communications, San Jose, CA, 1997.

[Horn74] Horning, J. What the compiler should tell the user. In Compiler Con-

struction: an Advanced Course, pages 525{548, Berlin, 1974. Springer

Verlag.

[Je�02] Je�ery, C. Generating LR syntax error messages from examples. sub-

mitted for publication, 2002.

[Levi92] Levine, J. R., Mason, T., and Brown, D. lex & yacc, 2nd ed. O'Reilly

& Associates, Sepastopol, CA, 1992.

[Shne82] Shneiderman, B. Designing computer system messages. Communica-

tions of the ACM, 25(9):610{611, 1982.

9


