
SYNTAX COLORING AND INCREMENTAL PARSING
FOR THE UNICON LANGUAGE

Luis Alvidres

December, 2006

ABSTRACT

The Unicon language incorporates many elegant ideas that provide
productivity gains. Programs in this language tend to be more readable and
maintainable[1]. The Unicon language IDE was developed by Nolan Clayton
and Clinton Jeffery and contains a set of tools like class browser, edit box and
menus that invoke the compiler on the code, using system interface functions
to call the compiler executable and providing it with the arguments depending
on what option was selected. This project adds two new tools to the existing
IDE and removes the need for some system interface calls thus providing
additional performance and productivity gains. These new tools are syntax
coloring and incremental parsing which interact with the lexical and syntax
analyzers of the Unicon compiler without the need of system interface
functions.

 2

INTRODUCTION

Unicon is an object-oriented, goal-directed programming language based
on the Icon programming language that originated at the University of Arizona

[1]. This language incorporates many elegant ideas that provide productivity
gains due to the fact that programs tend to be more readable and
maintainable than similar programs written in other very high-level
languages[1].

The Unicon language contains an integrated development environment

that assists computer programmers in developing software. The IDE contains
a set of tools which makes developing in this language even easier. The goal
of this environment focuses again on helping developers to achieve faster
results and provides a solution to the needs of complex applications.

 This project adds two new tools to the existing integrated development

environment in order to provide more productivity and performance gains.
These new tools are syntax coloring and incremental parsing which interact
with the lexical and syntax analyzers of the Unicon compiler and the
integrated development environment.

THE IDE SYNTAX COLORING AND INCREMENTAL PARSING BENEFITS

The growth in both the number and complexity of applications has pushed

the need for more sophisticated tools that aids the computer programmers in
developing software. An IDE typically provides large numbers of features for
authoring, modifying, compiling, deploying and debugging software. Tight
integration of various development tasks can lead to further productivity
increases[6].

Syntax coloring is a feature that displays source code in different colors
and fonts according to the category of terms. This feature eases writing in a
structured language such as a programming language as both structures and
syntax errors are visually distinct[6]. When looking at pages and pages of
code, syntax coloring greatly improves the readability and context of the text.
The reader can automatically ignore large sections of comments or code,
depending on what one desires.

Incremental parsing is a feature that compiles code while it is being
written into the text editor, providing instant feedback to the developer on
syntax errors[4].

 3

THE ORIGINAL IDE INTERACTION WITH THE COMPILER

 The starting point for this project was an IDE developed by Nolan
Clayton and Clinton Jeffery that contains a set of tools like class browser, edit
box and menus that interact with the compiler against the written code using
system interface functions to call the compiler executable and providing it with
the arguments depending on what option was selected.

 The general idea of how the IDE goes about parsing the code and

checking for any errors is:
1. User clicks on the Compile Only menu option.

2. The Compile Only method calls the save method which saves

the current code into a file.
3. The Compile Only method then uses the system interface

function to call the Unicon compiler executable with the appropriate
parameters.

4. The Unicon compiler executable opens the file and reads the entire
contents, parses it, and generates code.

5. The Unicon compiler creates a log file which the IDE passes as a
parameter to the showanyerror() function that extracts the

errors written into this file by the Unicon compiler and then they are
posted into a message box inside the IDE.

This coding example shows how the original IDE calls the Unicon

compiler executable using the system interface function.

pprroocceedduurree ccoommppiillee(())

 ssyysstteemm((""wwuunniiccoonn --cc --qquuiieett --lloogg "" |||| wwiiccoonnlloogg |||| "" "" |||| ttaarrggss ||||

 "" "" |||| ccoommpp11ffiillee((ccuurrrreenntt__ffiillee)),, lloogg))

 lloogg ::== rreeaaddiinn((wwiiccoonnlloogg))

 sshhoowwaannyyeerrrroorr((lloogg))

eenndd

Therefore, every time the user wants to check if the coding is syntactically

correct, a manual interaction between the user and the IDE needs to be
performed. At this point, the syntactical errors are shown in the form of a list
inside the message box.

 4

IMPLEMENTING SYNTAX COLORING

 The re-use of programming code is a common technique which
attempts to save time and energy by reducing redundant work thus avoiding
“re-inventing the wheel”. In this approach the main idea was to reutilize the
already built Unicon lexical analyzer and incorporate it into the extended
editable text list class that is used by the IDE as the coding typing text area.

The extended editable text list also contains a draw function that

overrides the original editable text list class draw function. This new draw
function incorporates line numbering to it by dividing the text area in to two.
The left side of the text area which can grow or shrink depending on the
amount of digits needed in order to represent the amount of lines and the
right side of the text area which contains the code. This function also calls
the left_string function from the gui package which is in charge of printing the
text in the editable text list area.

 Therefore, in order to implement the syntax coloring tool several steps

were needed. The first step was to create a UniconPackage package which
includes all the files needed by the compiler and then include it in the editable
text list class as an import statement in order to reutilize the compiler’s lexical
analyzer.

The second step was to create a new class variable called

errorLineNumber and add it to the extended editable text list class in order

to keep track of where the error is going to be set. This variable contains the
line number that is going to be drawn as red.

iimmppoorrtt UUnniiccoonnPPaacckkaaggee

bbuuffffeerrtteexxttlliisstt..iiccnn -- mmooddiiffiieedd eeddiittaabblleetteexxttlliisstt

AA ssccrroollllaabbllee eeddiittaabbllee tteexxtt aarreeaa.. AAnn {{EEvveenntt}} iiss ggeenneerraatteedd

wwhheenneevveerr tthhee ccoonntteennttss aarree cchhaannggeedd bbyy tthhee uusseerr..

$$iinncclluuddee ""gguuiihh..iiccnn""

$$iinncclluuddee ""yyttaabb__hh..iiccnn""

ccllaassss BBuuffffeerrTTeexxttLLiisstt :: EEddiittaabblleeTTeexxttLLiisstt((

 hhiigghhlliigghhttccoolloorr,,

 aauuttooiinnddeenntt,,

 ssccrroollll__yy,,

 eerrrroorrLLiinneeNNuummbbeerr,,

 ddooRReeppaarrssee

))

eenndd

 5

The third step was to create a helper function which decides the color of
the text based upon the tokens being returned by the lexical analyzer. The
yyin global variable and yylex_reinit function, from the lexical analyzer, are set
and called inside this helper function with the text of the current line being
processed. Additionally, other modifications were needed in the yyerror.icn
file which contains the yyerror function that reports the errors encountered by
the lexical and syntax analyzers. An error reinitialization mechanism was
needed in this yyerror function in order to avoid the istop function from being
called when the merr error counter got to 10 thus stopping the lexical analyzer
from finishing the entire line.

mmeetthhoodd lleefftt__ssttrriinngg__uunniiccoonn((wwiinn,, xx,, yy,, ss,, ccuurrrreennttLLiinnee))

 ## CChheecckk iiff aann eerrrroorr lliinnee hhaass bbeeeenn sseett..

 iiff \\eerrrroorrLLiinneeNNuummbbeerr tthheenn {{

 ## CChheecckk iiff tthhiiss ssttrriinngg bbeelloonngg ttoo tthhee eerrrroorr lliinnee

 iiff ((ccuurrrreennttLLiinnee == eerrrroorrLLiinneeNNuummbbeerr)) tthheenn {{

 FFgg((wwiinn,, ""RReedd"")) ## SSeett eerrrroorr lliinnee ccoolloorr ((rreedd))

 DDrraawwSSttrriinngg((wwiinn,, xx,, yy,, ss)) ## PPrriinntt tthhee ssttrriinngg

 rreettuurrnn ## EExxiitt tthhiiss mmeetthhoodd

 }}

 }}

 ## RReeiinniittiilliizzee eerrrroorr ccoouunntteerr iinn tthhee yyyyeerrrroorr ffuunnccttiioonn aanndd tthhee

 ## lleexxiiccaall aannaallyyzzeerr..

 yyyyeerrrroorr((""rreeiinniittiilliizzee mmeerrrr eerrrroorrss""))

 yyyyiinn ::== ss

 yyyylleexx__rreeiinniitt(())

 ## GGeett ssttrriinngg ss ttookkeennss

 wwhhiillee ((((ttookkeenn ::== yyyylleexx(()))) ~~====== EEOOFFXX)) ddoo {{

 ccaassee ((ttookkeenn)) ooff {{

 AABBSSTTRRAACCTT || BBRREEAAKK || BBYY || CCAASSEE || CCLLAASSSS || CCRREEAATTEE ||

 DDEEFFAAUULLTT || DDOO || EELLSSEE || EENNDD || EEVVEERRYY || FFAAIILL ||

 GGLLOOBBAALL || IIFF || IIMMPPOORRTT || IINNIITTIIAALLLLYY ||

 iiccoonnIINNIITTIIAALL || IINNVVOOCCAABBLLEE || LLIINNKK || LLOOCCAALL ||

 MMEETTHHOODD || NNEEXXTT || NNOOTT || OOFF || PPAACCKKAAGGEE ||

 PPRROOCCEEDDUURREE || RREECCOORRDD || RREEPPEEAATT || RREETTUURRNN || SSTTAATTIICC ||

 SSUUSSPPEENNDD || TTHHEENN || TTOO || UUNNTTIILL || WWHHIILLEE ||

 LLOOCCAALL :: FFgg((wwiinn,, ""BBlluuee""))

 SSTTRRIINNGGLLIITT || CCSSEETTLLIITT :: FFgg((wwiinn,,""DDaarrkk RReedd""))

 ddeeffaauulltt :: FFgg((wwiinn,, ""BBllaacckk""))

 }}

 ## PPrriinntt tthhee ssttrriinngg

 DDrraawwSSttrriinngg((wwiinn,, xx,, yy,, ss[[llaasstt__ss__PPoossiittiioonn::((nneeww__ss__PPoossiittiioonn++11))]]))

 }}

 ## DDrraaww tthhee rreesstt ooff tthhee ssttrriinngg ss tthhaatt wwaass nnoott aa ttookkeenn

 FFgg((wwiinn,, ""DDaarrkk GGrreeeenn""))

 DDrraawwSSttrriinngg((wwiinn,, xx,, yy,, ss[[llaasstt__ss__PPoossiittiioonn :: ((**ss ++ 11))]]))

eenndd

 6

Finally, the last step was to modify the draw function in order to utilize the
new functionality.

mmeetthhoodd ddrraaww((ss,, lleefftt__ppooss,, yypp,, ii))

 llooccaall ss11,, ss22,, nneewwpp,, ffhh,, aasscc,, ddeesscc,, yypp22

 ## CChheecckk iiff aann eerrrroorr lliinnee hhaass bbeeeenn sseett..

 iiff \\eerrrroorrLLiinneeNNuummbbeerr tthheenn{{

 ## CChheecckk iiff tthhiiss ssttrriinngg bbeelloonngg ttoo tthhee eerrrroorr lliinnee

 iiff ((ii == eerrrroorrLLiinneeNNuummbbeerr)) tthheenn {{

 ## SSeett eerrrroorr lliinnee ccoolloorr ((rreedd))

 FFgg((sseellff..ccbbwwiinn,, ""RReedd""))

 }}

 }}

 ## PPrriinntt lliinnee nnuummbbeerriinngg

 lleefftt__ssttrriinngg((sseellff..ccbbwwiinn,, lleefftt__ppooss --TTeexxttWWiiddtthh((sseellff..ccwwiinn,, ii))--33,, yypp,, ii))

 ## PPrriinntt ccooddee

 lleefftt__ssttrriinngg__uunniiccoonn ((sseellff..ccbbwwiinn,, lleefftt__ppooss,, yypp,, ss,, ii))

eenndd

The Unicon language tokens were divided inside the syntax coloring

function into 5 main categories:

Control structures and reserved words

Unicon has many reserved words. Some are used in declarations, but
most are used in control structures. These reserved words were given the
blue color.

Strings and Csets

The non-numeric atomic types available in Unicon are character
sequences (strings) and character sets (csets). String literals are enclosed in
double quotes, while cset literals are enclosed in single quotes. This group
was given the dark red color.

Comments

Unicon programming language has a construct that provides a
mechanism for embedding information in the source code. Comments begin
with the # character and extend to the end of the line on which they appear.
The compiler ignores them. This group was given the dark green color.

 7

Syntax Errors
A syntax error refers to a mistake in a statement's syntax and needs to be

corrected otherwise a compilation error would result. This group was given
the red color.

The Rest

The rest of the language including keywords, identifiers, operators,
preprocessor commands, predefined symbols and built-in functions were put
in this group. This group was given the black color.

An example of the color coding is presented here:

Figure 1: Syntax coloring example

 8

IMPLEMENTING INCREMENTAL PARSING

The main goal behind the implementation of incremental parsing is to
compile the code while is being written into the text editor, providing instant
feedback to the developer on syntax errors. Several steps were taken in
order to acomplish this task.

Baseline

The current starting point of this project is to call the compiler executable
using the system() function against the Unicon source file being edited

inside the IDE. The performance baseline for this project was obtained from
a study of 1628 Unicon source files that contained from 3 to 7000 lines of
code.

The study consisted on compiling each of the 1628 files using the starting

point IDE with some minor modification to the
handle_compile_menu_item(ev) method and the addition of another

method called handle_statistics_menu_item(ev). The second
method was in charge of opening, calling the
handle_compile_menu_item(ev) method, obtaining the parsing time,

storing the parsing time into a file and closing each of the Unicon source files
which were previously recollected. The results are shown in Figure 2.

Incremental Parser Performance

0

2000

4000

6000

8000

10000

12000

14000

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Code Lines

M
il
li
s
e
c
o
n
d
s

Baseline

Figure 2: Baseline performance (parsing time in milliseconds)

 9

First Approach

The first attempt to improve on the baseline was to modify the compiler so
that when the contents change inside the editable text list, the code then gets
saved into a temporary file and fed to the compiler which needs to get called
without using any system() functions.

This approach includes the modification of the compiler main()

procedure by adding an additional function called unicon() which becomes
the liaison function between the IDE and the compiler. Another modification
was the creation of a UniconPackage package that includes all the files
needed by the compiler and then it was included in the IDE as an import
statement in order to avoid problems with global variables utilized by the IDE
and the compiler. Finally, add the functionality inside the editable text list so
that when the contents change, a temporary file is created and passed to the
compiler newly created liaison function.

pprroocceedduurree mmaaiinn ((aarrggvv))

 rreettuurrnn uunniiccoonn ((aarrggvv))

eenndd

Pros

• Minimal changes to the IDE and to the compiler.

• No need for system() function calls.

Cons

• Opening, writing and closing the temporary files.

• Since the compiler also needs to open, read and close the temporary file
in this approach it takes more time to parse the code.

Metrics

• Based upon a study on 1628 Unicon source files that contained from 3 to
7000 lines of code:

o A 90% increase performance for small Unicon source files.
o A 40% increase performance for bigger Unicon source files.

 10

Incremental Parser Performance

0

2000

4000

6000

8000

10000

12000

14000

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Code Lines

M
il
li
s
e
c
o
n
d
s

Baseline First Approach

Figure 3: Baseline performance Vs First Approach performance

Conclusions

• Great performance improvement for small Unicon source files but not so
great for larger files.

• The overhead of calling system() function is almost 2 seconds, on a
Windows 2000 Professional Edition machine with a 2.5 GHz processor
and 512 MB of RAM, and dominates cost except on the largest files.

• In the real world, programs tend to have more than a thousand lines of
code, therefore more work is needed.

Second Approach

Instead of the code being written into a temporary file and then passed to
the compiler, the code is obtained from the editable text list and then passed
in the form of a string to the compiler thus avoiding the need to create a
temporary file and prevent the compiler from trying to open a file in order to
read the code.

This approach includes many modifications to the compiler and the

preprocessor programs since both needs to be aware of the new type of data
being received.

 11

Many of the modifications done in the two programs refer to the fact that
both programs are expecting a file to open and read from. So, many of the
efforts were done in identifying the type of data being received and how it was
going to be processed.

Pros

• Avoid creating a temporary file to store the code.

• Minimal changes to the IDE.

• Less parsing time since the compiler does not need to open, read and
close a file.

Cons

• Many changes to the compiler and preprocessor programs.

Metrics

• Based upon a study on 1628 Unicon source files that contained from 3 to
7000 lines of code:

o Saving time varied from 10 to 40 milliseconds.

0

5

10

15

20

25

30

35

40

45

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Lines Of Code

S
a

v
in

g
 T

im
e

 (
M

il
li

s
e

c
o

n
d

s
)

Figure 4: Saving times for temporary files.

 12

o A 2% performance increase versus the first approach.

Incremental Parser Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Code Lines

M
il
li
s
e
c
o
n
d
s

First Approach Second Approach

Figure 5: First Approach Vs Second Approach performance

Conclusions

• Only a 2% increase in performance was obtained due to the fact that the
time needed to save the code in a temporary file it is very low compared to
the amount of time it takes the compiler to parse the entire source file.

• A performance issue is still present for larger files.

Third approach

Instead of passing to the compiler the entire source code contained in the

editable text list, a portion of the code, which is currently being changed, is
extracted and passed to the compiler.

In this approach, a segment of the code is extracted from the editable text

list that is surrounded by enclosing statements like class -> end,

procedure -> end or method -> end thus focusing only on the segment

of code that is being changed. Segmenting the code reduces the amount of
code to be parsed thus reducing the amount of time the compiler needs in
order to run it against the parser.

Some of the modifications needed in this approach are located in the IDE.

A function called GetCode() was created and is in charge of going thru the

 13

code in search for the enclosing statements. Once again the lexical analyzer
is re-used in order to identify the enclosing statements tokens.

Pros

• Avoid creating a temporary file to store the code.

• Less parsing time since the compiler does not need to open, read and
close a file.

• Less parsing time since the compiler does not need to compile the entire
source code.

Cons

• Many changes to the IDE.

• Time needed to get the segment of code that is going to be parsed.

Metrics

• Based upon the feedback from 3 developers 90 milliseconds waiting time
was a good response time from the IDE attempting incremental parsing.

• Based upon a study on 9227 methods and procedures from different
Unicon source files, here are some interesting results:

o Procedures/Methods that have equal or less than 100 lines of code

take less than 90 milliseconds to parse.

o 98% of methods and procedures were less than 100 lines of code.

4410

2694

941

456
280

112 85 62 33 34 100
13 3 1 1 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1
 -
 1

0

1
0
 -
 2

0

2
0
 -
 3

0

3
0
 -
 4

0

4
0
 -
 5

0

5
0
 -
 6

0

6
0
 -
 7

0

7
0
 -
 8

0

8
0
 -
 9

0

9
0
 -
 1

0
0

1
0
0
 -
 2

0
0

2
0
0
 -
 4

0
0

4
0
0
 -
 6

0
0

6
0
0
 -
 8

0
0

8
0
0
 -
 1

0
0
0

1
0
0
0
+

Lines of Code

N
u
m

b
e
r
o
f
P
ro

c
e
d
u
re

s

Figure 6: Procedures/Methods grouped by the amount of lines of code.

 14

o 98% of methods and procedures take less than 90 milliseconds to
parse.

40 45 50 40 50 60 80 70 70 90 141 190

411

731

1850

3375

0

500

1000

1500

2000

2500

3000

3500

4000

1
 -
 1

0

1
0
 -
 2

0

2
0
 -
 3

0

3
0
 -
 4

0

4
0
 -
 5

0

5
0
 -
 6

0

6
0
 -
 7

0

7
0
 -
 8

0

8
0
 -
 9

0

9
0
 -
 1

0
0

1
0
0
 -
 2

0
0

2
0
0
 -
 4

0
0

4
0
0
 -
 6

0
0

6
0
0
 -
 8

0
0

8
0
0
 -
 1

0
0
0

1
0
0
0
+

Lines of Code

P
a
rs

in
g
 T

im
e
 (
M

il
li
s
e
c
o
n
d
s
)

Figure 7: Procedures/Methods parsing time based upon the number of lines.

• Based upon a study on 1628 Unicon source files that contained from 3 to
7000 lines of code:

o As Unicon source files get bigger the performance increase

percentage grows exponentially.

Incremental Parser Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Code Lines

M
il
li
s
e
c
o
n
d
s

Second Approach Third Approach

Figure 8: Second Approach Vs Third Approach performance

 15

• Based upon a study on 1628 Unicon source files that contained from 3 to
7000 lines of code:

o Looking at all of the approaches performance at once.

Incremental Parser Performance

0

2000

4000

6000

8000

10000

12000

14000

1+ 50+ 100+ 200+ 300+ 400+ 500+ 1000+ 2000+ 3000+ 7000+

Code Lines

M
il
li
s
e
c
o
n
d
s

Baseline First Approach Second Approach Third Approach

Figure 9: All approaches performance

Conclusions

• Parsing time was dramatically improved by just parsing a portion of the
code being edited.

• 98% of the time the compiler will only need to parse at most 100 lines of
code which has a response time of about 90 milliseconds even if your
programs have thousands of lines of code.

• 2% of the time the compiler will have to parse more than 100 lines of code
and therefore increase the response time from the parser giving the sense
that the IDE is having technical difficulties. This was detected on
pathologically large procedures/methods, which do exist but are usually
machine generated.

 16

FUTURE WORK

 There is still more work to be done in both of the tools created in this

project. The syntax coloring tool could be extended in order to color or
highlight more types of tokens like operators or even better, color the
background of methods, procedures, and classes thus greatly improving
readability.

As for the incremental parsing tool, there is still a 2% chance, based upon

the study of the second approach, that a method or procedure goes beyond
the 90 milliseconds response time and therefore creating a bad user
experience.

A code injection approach could be perused. By just extracting small

segments of code, like in the third approach but without going all the way to
the start or the end of a procedure or method, and then deciding which
enclosing statements are needed for them to be compiled, it reduces the
amount of lines to be parsed, thus avoiding a longer waiting times for these
2% of methods and procedures that take more than 90 milliseconds to
compile.

Additional variables would be needed in order to keep track of which lines

of code were injected so when an error occurs, the real line number can be
obtained and the injected lines can be removed. The injected code will only
be fed into the compiler and it will not appear in the source code shown in the
IDE.

Finally, some other approaches could be taken in order to avoid

exceeding the 90 milliseconds response time like preventing the compilation
based upon the number of lines being compiled or providing the user with the
capability of deciding if they wish to wait for longer periods of time.

CONCLUSION

The growth in both the number and complexity of application has pushed
the need for more sophisticated tools that aids the computer programmers in
developing software. Although Icon was developed to obtain productivity
gains from its language, syntax coloring and incremental parsing are other
ways to gain productivity by providing instant feedback to the developer on
syntax errors.

 17

REFERENCES

1. Jeffery, C.; Mohamed, S.; Pereda, R.; Parlett R. Programming with

Unicon. Available at: http://www.unicon.org

2. Rekers, J.; Parser Generation for Environments. Amsterdam:

University of Amsterdam, 1992

3. J. Heering, P. Klint, J. Rekers; Lazy and incremental program
generation. ACM Press 1994, New York, NY, USA
Research paper at:
http://portal.acm.org/citation.cfm?id=177750&coll=portal&dl=ACM&CFI
D=2773302&CFTOKEN=24996120

4. M. F. Cowlishaw; LEXX – A programmable structured editor.

IBM J. RES. DEVELOP. VOL. 31 NO, I JANUARY 1987
Research paper at:

 http://www.research.ibm.com/journal/rd/311/ibmrd3101G.pdf

5. Boshernitsan M., Graham S.; Interactive Transformation of Java
Programs. , OOPSLA’06, Oct 22–26, 2006, Portland, Oregon, USA.

 Research paper at: Department of Electrical Engineering and
Computer Science University of California, Berkeley.

6. From Wikipedia, the free encyclopedia; Syntax Highlighting and

Parsing. Available at: http://en.wikipedia.org/wiki/Syntax_highlighting

