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ABSTRACT

THE UNICONC UNICON COMPILER

BY

MICHAEL D. WILDER

Master of Science in Computer Science

New Mexico State University

Las Cruces, New Mexico, 2006 v01b

Dr. Clinton L. Jeffery, Chair

Goal-directed programming languages present unique challenges in many

areas for compiler developers. Substantial research in recent years has focused on

the development of compilers for object-oriented languages, but little research has

been published regarding compiler development for object-oriented, goal-directed

languages. This thesis describes the design and development of a compiler for the

object-oriented, goal-directed programming language Unicon.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 The Icon Programming Language

The Icon programming language [Gris-79] is a very high-level, goal-directed,

procedural programming language derived from the SNOBOL4 [Gris-71] and SL5

languages. Icon provides a rich set of high-level built-in data types that permit

the rapid development of applications with a minimum of programming effort.

Variables in Icon are untyped, and need not be declared before their use. Icon

programs are usually reduced to bytecode by Icont, the Icon translator, and in-

terpreted by Iconx, the Icon executive. Work on the Icon language proper was

halted with the retirement of its creator circa 1994.

1.1.1.1 Language Considerations

Icon programs are composed of declarations and expressions. The result

of evaluating an Icon expression is effectively a tuple consisting of a value and a

signal [Gris-79]. The value resulting from the evaluation of an Icon expression is

used in the same manner as values in traditional programming languages. The

signal resulting from the evaluation of an Icon expression is used to direct the flow

of control in an Icon program. The unique nature of expression results in Icon is
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what distinguishes the language from its progenitors and its peers. The resulting

semantics of Icon’s expression evaluation is that an Icon expression can result in

a single value (expression failure), no value, or a sequence of values.

Facilities for data abstraction in Icon are minimal. Abstraction in Icon

is accomplished through the use of procedures and records. The emphasis on

expressive control over data abstraction by the designers of Icon resulted in a

language that is curiously powerful and relatively easy to use. Icon programs

are constructed rapidly and are usually prototypical or experimental in nature.

The uniquely expressive nature of Icon programs poses multiple challenges when

transforming Icon expressions into statements or expressions in traditional pro-

gramming languages.

1.1.1.2 The Icon Interpreter

The virtual machine (VM) used to interpret Icon programs is as unique

as Icon itself. The goal-directed nature of Icon typically requires a VM capable

of backtracking as a result of expression failure. Backtracking in the Icon VM is

facilitated by a stack of expression frames.

The instruction set of the Icon VM is relatively small, but extremely pow-

erful and highly orthogonal. Variables in Icon are untyped and need not be de-

clared before being referenced. The Icon interpreter must check the types of all

instruction operands at the time of instruction execution in order to determine
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struct descrip { /* descriptor */

word dword; /* type field */

union {
word integr; /* integer value */

char *sptr; /* pointer to character string */

union block *bptr; /* pointer to a block */

dptr descptr; /* pointer to a descriptor */

} vword;

};

Figure 1.1: Descriptor Declaration

the feasibility of a requested operation. Instruction operands are presented to

the Icon VM as descriptors that generically denote the type and value of a given

operand. The declaration of a descriptor is shown in Figure 1.1. Many instruc-

tions in the Icon VM are manifested as functions in the run-time library of a given

Icon implementation. The use of descriptors as operands to Icon VM instructions

results in run-time library functions that contain multiple branches to resolve the

destination of control flow depending upon the type or types of operands to a

given VM instruction.

1.1.2 The Iconc Optimizing Compiler

The Iconc optimizing compiler [Walk-91] was the result of an extensive

effort to support optimization experiments on Icon and other programming lan-

guages. Iconc consists of a run-time library and the compiler proper. The run-time

library used by Iconc is implemented using a special-purpose language based upon

the C programming language. This language, called the Iconc run-time library
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implementation language contains grammar constructs used to specify the types

received, created, and returned by Icon built-in functions and operators. The

information provided by these constructs is used during type inferencing. Iconc

translates programs expressed in the Icon programming language into the C pro-

gramming language. The C code generated by Iconc is compiled by a host C

compiler, and is linked to the Icon run-time library by a host linker to create an

executable program for the host platform. Iconc infers at compile-time the set of

run-time types that an Icon expression may assume. The Iconc type inferencer

is described in Section 1.1.2.2. The type inferencing model employed by Iconc

precludes the separate compilation of Icon programs.

1.1.2.1 Syntax Analysis

Syntax analysis in Iconc is performed by an LALR parser generated by

YACC. Iconc constructs a parse tree and decorates it with attributes pertaining

to a given node. Symbol tables for procedures, records, globals, locals, fields, and

constants encountered in a given program are populated at this time. Checks

for undefined symbol references and inconsistent redeclarations are performed by

Iconc during this phase. The nodes of the tree that Iconc creates during syn-

tax analysis contain member fields that are specifically designed for use during

semantic analysis.
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1.1.2.2 Semantic Analysis

Iconc employs a type inferencing system based upon global dataflow anal-

ysis to determine the types that variables may assume during program execution.

The parse tree that Iconc creates during syntax analysis is used to maintain a

graph depicting the flow of data in an Icon program during type inferencing.

Type information in Iconc is represented as a vector of bits. There are three sep-

arate sizes of bit vectors that are used to represent types at given program points

depending on the set of types that can be generated at or propagated along a

given program point. The size of bit vectors is determined at the start of type

inferencing based upon information gathered during syntax analysis.

Before type inferencing proper begins, Iconc iterates over each procedure

defined in a given program searching for code points where structures may be

created during the execution of the program. At each such point, Iconc allocates

a datum recording the characteristics of the structure that may be created and

stores this datum in the parse tree node associated with the program point where

creation may occur. Iconc again iterates over each defined procedure in order to

allocate stores representing changes to be propagated along the flow graph during

type inferencing. Each node of the flow graph representing a procedure is dec-

orated with a store capable of representing the types that are propagated into

the procedure, and a store representing the types that are propagated out of the

5



procedure. If a procedure is capable of suspending, it is also decorated with a

separate store capable of representing the types that the procedure generates as

a result of being suspended. Stores are represented as arrays of pointers to type

vectors. When each procedure in a program is visited during this pass, Iconc tra-

verses the parse tree pertaining to the body of the procedure in order to determine

the location of implicit and explicit loops that may survive successive iterations

of type inferencing. For each such loop that is encountered, Iconc allocates a

separate store capable of representing the types that will be propagated along the

flow graph of the loop during type inferencing.

Type inferencing is performed in a sequence of iterations over a given Icon

program. An iteration begins at the program entry point procedure main() and

proceeds along the flow of execution until this procedure is exited. A running count

of the number of changes propagated along flow graph edges is maintained during

each type inferencing iteration. Type inferencing continues until the number of

changes propagated during an iteration is zero. Each possible path of execution

in a program is followed in an iteration of type inferencing. The computation

performed during an iteration of type inferencing is exacerbated by the goal-

directed nature of Icon semantics. The reader is directed to [O’Ba] and [Walk-91]

for discussions of the intricacies posed by goal-directed evaluation in determining

the lifetime of temporary variables in Icon programs.
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1.1.2.3 Optimizations

Iconc is capable of performing multiple optimizations on the internal repre-

sentation of the C code that it generates for a given Icon program. The optimiza-

tions that Iconc can perform fall into two broad categories: control flow optimiza-

tions and invocation optimizations. Control flow optimizations are realized by

performing peephole analysis on the intermediate C code after type inferencing of

a program is completed. The peephole analyzer in Iconc eliminates certain forms

of unreachable code, collapses branch chains, and removes unreferenced labels.

Iconc can also optimize the invocation of procedures and functions. These

optimizations are particularly daedal. The interaction between these is a source

of their complexity.

Invocation optimizations are performed by Iconc based upon information

gathered from type inferencing, and information gathered regarding the lifetime of

temporaries used as invocation parameters. Iconc is capable of inlining functions

contained in the run-time library. If the developer of a run-time function indicates

that inlining should be enabled, Iconc will inline code for the operation if and

only if the target of the inlining contains no more than one type check. Some

control flow optimizations performed by Iconc may result in the elimination or

simplification of the signals emitted by an Icon expression. The reduction or

patching of signal-handling code resulting from these optimizations is perfomed
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immediately before generated code is written.

1.1.2.4 Code Generation

The Iconc code generator emits code to a single .c and its associated .h

file. Code generation begins by writing C code corresponding to globals, statics,

declarations, and literal constants in a given Icon program. The list of procedures

contained in a given program is traversed, and code is generated for the declara-

tion and body of each procedure if the procedure is within the potential path of

control flow of the program. Information regarding the reachability of procedures

is collected and recorded during type inferencing.

1.1.3 The Unicon Programming Language

The Unicon programming language [Jeff] is a very high-level, object-oriented,

goal-directed programming language that is a descendant of and superset of the

Icon. Unicon evolved over a number of years from a line-oriented preprocessor

called “Idol” (Icon-Derived Object Language) into its present form as a full-

fledged translator. Unicon preserves the syntax, semantics, and spirit of Icon

while unobtrusively augmenting the data abstraction capabilities of Icon. Unicon

is well suited for developing “one-shot” experimental programs because it honors

its ancestry, and is equally well suited for the construction of large-scale soft-

ware systems because it adds object-oriented grammatical constructs that readily

facilitate encapsulation and code reuse.
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Unicon encourages the use of namespaces in varied forms, thereby clearing

the global namespace and potentially reducing coupling. Two such namespaces

provided by Unicon are class and package. These namespaces require addi-

tional analysis in order to properly resolve the scope of a given symbol and to

detect potential namespace collisions. The requisite additional analysis associ-

ated with namespaces is performed by Unicon during the syntax and semantic

analysis phases.

Unicon translates Unicon programs into a dialect of Icon. The dialect

of Icon that serves as the output of the Unicon translator is an extension of

Icon proper. The Icon translator (Icont), executive (Iconx), and run-time library

have been modified to accomodate the extensions that have been made since the

retirement of Icon proper circa 1994. Unicon programs are interpreted using the

updated versions of Icont, Iconx, and the run-time library.

1.1.3.1 Syntax Analysis

Syntax analysis in Unicon is performed by an LALR parser generated by

a modified version of the Berkeley YACC. The Unicon grammar is similar to

the Icon grammar, but the areas where Unicon diverges are significant. The

parse tree produced by Unicon is a hybrid composed of generic treenodes and

nodes representing semantically rich units such as classes and methods. Actions

associated with rules in the Unicon grammar create this hybrid parse tree. Many

9



of the transformations required to translate Unicon into Icon are performed during

this phase.

1.1.3.2 Semantic Analysis

The Unicon code that performs the semantic analysis phase of a Unicon-

to-Icon translation is a prime example of the power and expressivity of the Unicon

language. Semantic analysis of a Unicon unit begins immediately after the parse

tree for the unit is populated. The parse tree created during syntax analysis

is traversed to identify and perform name mangling on symbols associated with

packages and classes. The complexity of this task is compounded by the fact that

variables in Unicon (like Icon) need not be declared. Transitive closure of the

superclass graph associated with any classes is performed, followed immediately

by inheritance resolution for classes. The specification of any package or classes

encountered are then written out to a database for subsequent use. Methods

associated with objects inserted into the parse tree during syntactic analysis are

invoked during semantic analysis to accomplish these tasks.

1.1.3.3 Code Generation

Generating the Icon code for a given Unicon unit is accomplished by a

traversal of the parse tree for that unit. Methods associated with objects inserted

into the parse tree during syntactic analysis are again used to accomplish code

generation. Readability of the final product is facilitated by minor formatting

10



calisthenics performed during this phase.

1.2 Motivation
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CHAPTER 2

UNICONC ORGANIZATION

2.1 Topology

Uniconc is composed of three subsystems: a modified version of the Uni-

con translator (Unicon∆), a modified version of the Iconc optimizing compiler

(Iconc∆), and a modified version of the Unicon run-time library (RTL∆). The

purpose of each of these subsystems is largely the same as its predecessor, but

each has been modified to some degree in order to accomplish the compilation of

Unicon programs. The Unicon∆ subsystem translates programs presented in the

Unicon programming language into the Icon programming language. The Iconc∆

subsystem translates programs presented in the Icon programming language into

the C programming language. The RTL∆ serves to provide functionality com-

monly used in Unicon and Icon programs to a program executing on a given

platform.

The topology of Uniconc as depicted in Figure 2.1 reveals that Uniconc

shares some similarities with most traditional compilers while remaining fairly

unique. There are three source languages involved in Uniconc. There are effec-

tively four levels of intermediate code in Uniconc. There are two distinct phases

of analysis and two distinct phases of synthesis in Uniconc.

12
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optimizations

?

Icon source
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optimizations

?

C source

RTL∆

-

-

Figure 2.1: Uniconc Topology

2.2 Design Considerations

Uniconc is designed to facilitate experimentation. At the outset of this

project the decision was made to retain and modify the Unicon translator rather

than eliminate it by extending the syntax analyzer for Iconc to include Unicon

constructs. This route was the shortest path to achieving the compilation of Uni-

con programs. More importantly, this decision endowed Uniconc with attributes

that make it a useful tool for conducting code transformation experiments.

Intermediate code is produced by Uniconc at four points during the com-
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pilation process. Transformations performed in the semantic analysis phase of

Unicon∆ produce intermediate code that is subsequently transformed by the op-

timization phase of Unicon∆ to produce Icon code acceptable to Iconc∆. The

Icon code produced by Unicon∆ is effectively another level of intermediate code.

Transformations performed in the semantic analysis phase of Iconc∆ produce in-

termediate code that is subsequently transformed by the optimization phase of

Iconc∆ before producing C code that is compiled by the host C compiler of a

given system. The C code produced by Iconc∆ is effectively another level of in-

termediate code that is acted upon by the host C compiler. Each of these levels

of intermediate code provides a waypoint at which the overall progress of a code

transformation experiment can be evaluated. These waypoints also enable the

design of code transformation experiments that span one or many levels of in-

termediate code. The transparency provided by these waypoints decreases the

turnaround time for code transformation experiments and thereby increases the

time that experimenters can devote to the design and analysis of transformations.

Early experiments with Iconc revealed many impressive features that were

clearly of significant value. The decision not to implement a new syntax analyzer

for Iconc∆ also greatly reduced the number of modifications that were required

to produce Iconc∆ from Iconc, and thereby reduced the likelihood of introduc-

ing errors into an otherwise formidable tool. This same decision increased the

number of modifications that were required to produce Unicon∆ from Unicon.
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Experience has shown, however, that the expressivity and pliability of the Unicon

programming language make Unicon∆ a great place to introduce modifications.

Time, in its varied disguises, is ever a design consideration. During the

design of Uniconc, a primary focus was the speed of compiled code. Early efforts

in compiling Unicon programs during this project produced unsatisfactory results

in this area. The speedup of code compiled by Uniconc was gradually improved

by performing code transformation experiments with Uniconc spanning single and

multiple segments of intermediate code. The time required to complete code

transformation experiments in Uniconc was itself also gradually reduced, but never

at the expense of speedup in compiled code. The Uniconc compiler presented in

this thesis is the result of many code transformation experiments conducted with

earlier versions of Uniconc.

2.3 Translation Model

Programming language translation is the heart of any compilation system.

Code transformations must be chosen carefully in order accomplish translation

that preserves the semantics of programmer input while simultaneously producing

the best possible mapping to target code in terms of space-time constraints. The

object-oriented Unicon programming language presents many challenges when

translating into the procedural Icon programming language. Inheritance mecha-

nisms in the Unicon programming language present particularly acute challenges
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when translating into the Icon programming language. Namespaces added by the

Unicon programming language to provide encapsulation mechanisms also require

particular care to ensure that the integrity of a namespace is not violated when

translating into a procedural programming language such as Icon. The Unicon

programming language has always been a VM-based interpreted language until

the advent of Uniconc. Symbol resolution responsibilities that were performed

at run-time by the Unicon interpreter require compile-time code transformations

and symbol table manipulations that were not previously performed. The goal-

directed nature of the Unicon and Icon programming languages poses particularly

challenging problems when translating into an imperative programming language

such as C. The intricacies involved in translating Icon into C were fortunately

solved by the creators of Iconc.

The topology of Uniconc predicates a translation environment that differs

from most compilers. Because the ultimate target language of Uniconc is C,

traditional code transformational considerations relating to specifics of the target

architecture are not a primary concern. This is simultaneously an advantage

and a limitation. The peculiarity of generating intermediate code at effectively

four places in three forms during the Uniconc compilation process places added

emphasis on the order of application of code transformations in Uniconc, and

likewise permits experimentation with transformations that span multiple forms

or segments of intermediate code.

16



Many of the code transformations that occur during the compilation of a

Unicon program by Uniconc are simple transformations that are applied within a

single segment of intermediate code. Code transformations that are applied across

multiple segments of intermediate code in Uniconc are referred to as compound or

inter-segment transformations. The cumulative effect of an inter-segment trans-

formation in Uniconc depends upon a series of subtransformations applied at mul-

tiple segments. This phenomenon is referred to as inter-segment transformational

dependency in Uniconc.

Inter-segment transformations are inherently risky and require extensive

experimentation. Care must be taken to ensure that the sequence of subtransfor-

mations applied by an inter-segment transformation do not produce side effects

that nullify or otherwise dilute the efficacy of other transformations. Analysis of

the results produced by an inter-segment transformation can be particularly del-

icate and time-consuming because the correctness of code is potentially affected

at multiple points in the translation stream.
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CHAPTER 3

THE UNICON∆ SUBSYSTEM

3.1 Syntax Analysis

A command-line switch was added that permits the Uniconc user to in-

dicate whether the Unicon source code is to be compiled or interpreted. This

facility allows Uniconc to generate targets that are interpreted by Iconx or targets

that run natively on a targeted platform. The behavior of the Unicon∆ syntax

analyzer is vastly different if the input source is intended to be compiled. This

divergence of behavior is necessary because symbol resolution responsibilities that

were performed at run-time by the Unicon interpreter require compile-time code

transformations and symbol table manipulations when producing compiled tar-

gets. Semantic actions associated with productions in the Unicon programming

language grammar were modified to provide distinct funcionality when Uniconc is

used as a compiler. Multiple code transformations occur during the Unicon∆ syn-

tax analysis phase in the event that Uniconc is being used to produce a compiled

result.

The Icon programming language contains a grammatic construct that al-

lows programmers to incorporate library procedures in user-level code. The fol-

lowing Icon expression
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link strings, graphics

directs that the procedures found in the strings and graphics modules be made

available to the Icon source currently being translated. The Unicon programming

language inherits this construct from the Icon programming language, and adds a

similar grammatic construct known as packages. The following Unicon expressions

package lang

import gui, cog

direct that the classes, declarations, and procedures found in the Unicon source

currently being translated be made part of the lang package, and that the classes,

declarations, and procedures found in the gui and cog packages be made available

to the Unicon source currently being translated. The Unicon expression

package f00

creates or adds to a namespace f00, whereas the expression

import f00

permits access to the symbols previously defined in the f00 namespace. This

behavior is unlike any construct found in the Icon programming language. The

Unicon translator performs a weak link to all packages that are imported, defer-

ring symbol resolution until run-time when the corresponding bytecode is being
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interpreted. This methodology is unacceptable when attempting to compile Uni-

con source because Iconc∆ requires compile-time symbol resolution in order to

perform type inferencing. Uniconc compensates for this by identifying each link

or import target in a compilation and parsing it exactly once. Each new link or

import target encountered in a file that is itself a link or import target is also

parsed. The resolution and parsing of link and import targets continues until all

targets have been parsed once. This problem is solved by defining three tables in

Unicon∆ called iconc links, iconc imports, and iconc parsed. Each time that

a link or import expression is encountered during the parsing of a Unicon source

file, Uniconc resolves the targets associated with the expression. Each target that

is not already a member of the iconc parsed table is added to the iconc links

or iconc imports table. All members of the iconc links and iconc imports ta-

bles are themselves removed from their respective table, parsed, and added to the

iconc parsed table. This continues until there are no members remaining in the

iconc links and iconc imports tables. The iconc links and iconc imports

tables are cleared before the start of parsing each new Unicon source file specified

on the Uniconc command-line, whereas the contents of the iconc parsed table

persist for the duration of a Uniconc command-line invocation.

Actions associated with productions for invocations in the Unicon gram-

mar have been modified in order to perform code transformations as the parse

tree for a Unicon source file is being populated. Different code transformations
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are performed depending upon the nature of the invocation encountered. The pri-

mary motivation for performing these code transformations is to reduce complex

expressions in order to simplify vector table resolution in the Iconc∆ subsystem

at compile-time. Rules for invocations appearing in the Unicon programming lan-

guage grammar are shown in Figure 3.1. The expr11 nonterminal appearing in

Figure 3.1 can produce many grammatic constructs, including other invocations.

The expr11 nonterminal permits Unicon programs to contain arbitrarily complex

expressions that describe the entity containing the procedure or method that is

to be invoked. A sampling of invocations expressed in the Unicon programming

language and the corresponding transformations performed by Uniconc on these

invocations appears in Figure 3.2.

Consideration of Figure 3.2 reveals the nature of the transformations per-

formed for invocations. A sequence of transformations are applied to each expres-

sion corresponding to an expr11 until the expression is reduced to an l-value held

in a temporary Unicon variable. The type of l-values held in temporary variables

is examined during the semantic analysis phase of Iconc∆ to determine whether

further transformations are required in order to reproduce the semantics of the

original invocation. In transformation 7→2 depicted in Figure 3.2, the type of the

l-value 5 must be ascertained in order to determine whether or not the invocation

of get is the invocation of a field or a method. If the type of the l-value 5 is not

an instance of a class, no subsequent transformations are required to convey the
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expr11 : ...

| expr11 LPAREN exprlist RPAREN {
$$ := SimpleInvocation($1,$2,$3,$4);

} ;

| expr11 DOLLAR INITIALLY LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6)

} ;

| expr11 DOLLAR IDENT LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6)

} ;

| expr11 DOLLAR IDENT DOT INITIALLY LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6,$7,$8)

} ;

| expr11 DOLLAR IDENT DOT IDENT LPAREN exprlist RPAREN {
$$ := InvocationNodeShim($1,$2,$3,$4,$5,$6,$7,$8)

} ;

Figure 3.1: Invocations in the Unicon Grammar

x.peek().uncouple(y) 7→1

( 1 := x.peek(x)) & 1.uncouple( 1,y);

(\n).g.k.get(23) 7→2

(( 5 := ( 4 := (\n).g) & 4.k) & 5.get(23));

self$buf.initially() 7→3

(self) & (buf oprec.initially(self));

(\f)$buf.initially() 7→4

\(f) & (buf oprec.initially(f));

every (!a)$buf.initially() 7→5

every (( 2:=(!a))) & (buf oprec.initially( 2));

Figure 3.2: Sample Uniconc Invocation Transformations
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semantics of the original invocation. In the event that the type of the l-value 5 is

an instance of a class, another transformation must be applied to the invocation in

order to add the implict “self” parameter when invoking the method get so that

proper state of the class instance 5 will be maintained and semantic closure can

be attained. If 5 is an instance of a class, the transformation depicted in Fig-

ure 3.2 is part of a compound or inter-segment transformation, and the insertion

of the implict self argument to attain semantic closure satisfies the inter-segment

transformational dependency introduced by the initial transformation depicted in

Figure 3.2.

The remaining transformations depicted in Figure 3.2 are simple transfor-

mations. In each of these transformations, enough information has been gleaned

during the syntax analysis phase of Unicon∆ to unambiguously determine a single

transformation that attains semantic closure with the original invocation. In the

case of the invocation of a superclass method, as depicted in transformations 7→3,

7→4, and 7→5 of Figure 3.2, transformations in Unicon∆ must discard the $ opera-

tor because it is an extension of Icon proper. Earlier versions of Uniconc deferred

method resolution until run-time. As experimentation with code transformations

in Uniconc progressed, increasing subsets of functionality were added to the com-

piler and this methodology was discarded where possible in order to produce

more efficient run-time behavior of compiled programs. In the rare event that the

resolution of a method cannot be accomplished unambiguously at compile-time,
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Iconc∆ generates code in the form of a C switch statement to achieve resolution

of a method at a given code point at run-time.

Actions associated with productions for field references in the Unicon gram-

mar have been modified in order to perform code transformations as the parse

tree for a Unicon source file is being populated. Different code transformations

are performed depending upon the nature of the field reference encountered. Be-

cause a field reference in the Unicon programming language can be produced by

the expr11 nonterminal in the Unicon programming language grammar, chains of

field references are reduced to l-values held in temporary Unicon variables. As is

the case with method invocations, these l-values are examined during the semantic

analysis phase of Iconc∆ in order to ascertain the type of the entity to which a field

reference is being made. The reductions performed by the code transformations

applied to field references improve the quality of the code generated by Iconc∆

by reducing the work necessary to unambiguously determine the parent record or

class containing a given named field.

The reductions performed by the code transformations applied to field

references also improve the efficiency of compiled targets by ensuring that field

references are not unnecessarily evaluated when inserting an implict “self” argu-

ment in an invocation that has a field-reference as a constituent expr11. In the

following code snippet

x := r.o.m(23)
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the implicit “self” argument that should be added to this invocation is r.o. A

transformation applied producing this result

x := r.o.m(r.o,23)

would generate a superfluous second evaluation of r.o. A transformation that

reduces the expression to an l-value before inserting the implict argument produces

x := (( 1 := r.o) & 1.m( 1,23));

thereby saving the evaluation of a field reference at run-time. A fundamental

problem solved by expression reduction in this case is revealed when attempting to

determine the primary nature of r.o. In the example depicted above, if r.o is not

an instance of a class, no transformation is required to achieve semantic closure.

Determining whether r.o is an instance of a class is occasionally problematic in

Unicon∆. In such cases, Unicon∆ will produce a transformation of the form

x := (( 1 := r.o) & 1.m(23));

and defer resolution of the type of r.o until after type inferencing is performed

during the semantic analysis phase of Iconc∆. If type inferencing reveals that 1

(and thereby o.m) is an instance of a class, semantic closure of the compound

transformation initiated in Unicon∆ will be achieved by inserting the implicit 1

as the first argument in the invocation of m.
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3.2 Semantic Analysis

The semantic analysis phase of the current version of Unicon∆ contains

only minor modifications to accomodate Uniconc. Earlier versions of Uniconc con-

tained extensive modifications to the semantic analysis phase of Unicon∆. Most

of the modifications that were present in the Unicon∆ semantic analysis phase

of these earlier versions of Uniconc were mothballed after a system was devised

to distinguish between class instances and record instances in Iconc∆. Before

this system was devised, a separate pass over the parse tree during the semantic

analysis phase of Unicon∆ was necessary in order to attempt to disambiguate invo-

cations and field references. The results produced by this additional pass were not

of the same caliber that are currently achieved by deferring disambiguation until

after type inferencing is performed during the semantic analysis phase of Iconc∆.

The system devised to distinguish between class instances and record instances in

Iconc∆ is described in Section 4.1, and is employed in an optimization described

in Chapter 5.

During the semantic analysis phase of Unicon∆, the parse tree is pruned

of all nodes corresponding to package and import expressions. This pruning is

necessary because Iconc∆ has no knowledge of these grammatic constructs. The

parse tree is also pruned of nodes corresponding to link expressions because

Unicon∆ handles all such expressions for compiled targets in order to resolve any
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package or import expressions that may be present within a file that is itself the

target of a link expression. Checks are performed during this pruning to ensure

that all package, import, and link expressions have been correctly resolved.

3.3 Code Generation

Minor modifications to the code generation phase of Unicon∆ have been

made in order to remove tail recursion from Unicon procedures that are recursively

invoked while emitting generated Icon code. These modifications were made after

exhausting space resources during the code generation phase of Unicon∆ on some

computational platforms. These modifications are active whether a given target

is to be interpreted or compiled.

Transformations are applied to Icon code generated by the Unicon∆ code

generation phase in order to produce Icon code that decreases the number of field

references required to accomplish the invocation of a Unicon method. This series of

transformations is detailed in Section 5.1. The series of transformations performed

at this point fundamentally modify the representation of Unicon programming

language class instances in Icon code generated by Unicon∆ and are therefore

only performed for targets that are to be compiled. These transformations are

accomplished in a separate post-processing pass over the Icon code generated by

Unicon∆. This additional pass imparts visibility into transformational mappings

produced, thereby reducing the amount of time required to analyze the results of
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code transformation experiments performed at this point. As experiments with

this series of transformations progresses, these transformations may become part

of the Unicon∆ code generator proper and not require a separate pass over the

Icon code generated by Unicon∆.
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CHAPTER 4

THE ICONC∆ SUBSYSTEM

4.1 Syntax Analysis

Record types are a primary vehicle for data abstraction in the Icon pro-

gramming language. The Unicon programming language extends the notion of a

record type by permitting users to declare and define (instantiate) classes. Classes

in the Unicon programming language are ultimately represented as Icon records

before being interpreted or compiled. In certain cases it is very important to be

able to differentiate between Icon records that represent Unicon classes and Icon

records that represent Icon records. Invocations, as described in Section 3.1, are

an example of this necessity. Classes in the Unicon have fundamentally different

semantics than records in the Icon. When it is impossible to differentiate between

records that represent classes and records that represent records, information and

therefore code transformational leverage are lost. In such a case, the designer of

code transformations must choose to endow records with the same semantic prop-

erties as classes, to demote classes to the semantic equivalent of records, or to defer

differentiation until run-time. None of these choices is particularly appealing.

It was recognized early on during the course of this project that the in-

formation lost by representing classes as records was information that had to be
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record class1 state(...)

record class1 methods(...)

global class1 oprec := class1 methods(...)

Figure 4.1: Simplified Unicon Class Representation

reclaimed. It was also recognized that requiring the type inferencing phase of

Iconc∆ to perform significantly more computation or to consume more space as

a result of this reclamation was not an option. Multiple experiments were per-

formed before settling on an approach that balances the performance requirements

of compiled code with the performance requirements of compiling code.

Each Unicon class is translated into a pair of Icon record declarations.

These declarations contain a unique signature that can be detected at compile-time.

A complete example of the Icon code produced for a Unicon class is shown in Ap-

pendix B. A simplified representation of the Icon code produced for a Unicon

class is depicted in Figure 4.1. Referring to this simplified representation reveals

that a Unicon class named class1 is translated into a pair of Icon record declara-

tions. The record class1 state contains all of the data members associated with

an instance of any class1, and the singleton instance of class1 methods called

class1 oprec contains the operations shared by any class1 instances. It should

be noted that this is a simplification for the sake of discussing the method that

was devised to distinguish between record instances and class instances during the

compilation of a Unicon program. The actual representation of Unicon classes is
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transformed extensively by a post-processor in order to reduce the time required

to perform a method invocation in Unicon programs compiled by Uniconc, and to

reduce the space consumed by a class instance in Unicon programs compiled by

Uniconc.

During the syntax analysis phase of Iconc∆, each record declaration is

added to a list of record entries of type struct rentry detailing the record types

that are present in a program. Each global entity detected by Iconc∆ is ascribed

a set of attributes or flags that denote the nature of said entity. In the case of

a record declaration, the flag F Record is ascribed. Iconc∆ has been modified

to add another attribute, called F Object, that is ascribed in the event that

a record declaration conforms to the unique signature indicating that it is the

representation of a class instance. This attribute is checked during the semantic

analysis and code generation phases of Iconc∆ in order to perform transformations

that increase the efficiency of compiled code.

Further modifications to Iconc∆ have been made in order to reclaim the

semantics of classes. During the syntax analysis phase, Iconc∆ detects operations

records (xxx oprec) instances and creates a virtual table (vtbl) corresponding

to each operation record instance encountered. These vtbls are accessed during

the semantic analysis and code generation phases of Iconc∆ in order to reduce the

number of field references required to perform a method invocation in compiled

Unicon programs. Virtual tables are logical wrappers that encapsulate global
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ctor := constructor("dbrow", dbcol[1], dbcol[2])

every i := 1 to *dbrows do {
r := ctor(dbrows[i][1], dbrows[i][2])

write("row: ", i, " col[1]: ", r[1], "col[2]: ", r[2])

}

Figure 4.2: Dynamic Records in Unicon

entries of type struct gentry in Iconc∆ and provide an interface for member-

ship queries. Each vtbl is a lightweight construct requiring the space of two

compile-time pointers.

The Unicon programming language extends the notion of a record type by

permitting the instantiation of records whose form is not known until run-time.

This language feature known as dynamic records is illustrated in Figure 4.2.

This language feature is based upon and exploits run-time information for

which there exists no compile-time analog. Uniconc makes a limited effort to de-

termine the number of dynamic records that may be instantiated at run-time. It is

necessary for Iconc∆ to know the number of record types that may be instantiated

at run-time in order to efficiently perform type inferencing during the semantic

analysis phase. The design of Iconc∆ predicates that the number of types be

known and fixed before type inferencing is performed. The syntax analysis phase

of Iconc∆ has been modified to detect invocations of the constructor function and

to create new record entries of the form struct rentry. Each struct rentry

created contains the type name of the record and the name and number of the

32



record fields when it is possible to determine this information at compile-time.

The number of dynamic records encountered during syntax analysis is tabulated,

and this information is used by Iconc∆ to perform type inferencing. The starting

index of dynamic records is embedded in the code generated for a compiled Unicon

program. This information embedded in the generated code is used to synchro-

nize the RTL∆ with the compiled program in order to ensure that the RTL∆ does

not assign record numbers to dynamic records in the constructor function that

collide with record numbers used for non-dynamic records in a given program.

The RTL∆ has been modified in order to permit the instantiation of dynamic

records at run-time in compiled Unicon code. Empirical evidence suggests that

the technique to avoid record number collisions at run-time in compiled Unicon

programs is effective.

4.2 Semantic Analysis

The semantic analysis phase of Iconc∆ has been modified in order to iden-

tify and complete code transformations initiated in Unicon∆. Each parse tree node

representing an invocation is examined during type inferencing in order to identify

inter-segment transformational dependencies that remain unsatisfied. Invocation

nodes that type inferencing indicates are fields that have the attribute F Object

are further examined to determine whether an implicit “self” argument must be

added to the argument list of the invocation in order to satisfy an inter-segment
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case N Invok:

/*

* General invocation.

*/

infer nd(Tree1(n)); /* thing being invoked */

if (Tree1(n)->n type == N Field && fldref is class(Tree1(n))) {
methodinvok add implicit self(n);

}

/*

* Perform type inference on all the arguments and copy the

* results into the argument type array.

*/

sav argtyp = arg typs;

sav nargs = num args;

Figure 4.3: Examining Invocations in Iconc∆

transformational dependency. If an unsatisfied dependency exists, the parse tree

node corresponding to the invocation is modified in order to achieve semantic

closure. Each modified invocation node is marked to prevent superfluous exami-

nations. The parse tree transformations performed during the semantic analysis

phase of Iconc∆ are simplified by the parse tree transformations performed during

the syntax analysis phase of Unicon∆. Many fruitless experiments were performed

before determining an effective method of coordinating inter-segment transforma-

tions between Unicon∆ and Iconc∆. The C code to examine invocations during

type inferencing is depicted in Figure 4.3. The C code to insert an implicit self in

a method invocation is depicted in Figure 4.4.
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static

void

methodinvok add implicit self(n)

struct node * n;

{
int i;

int nargs;

struct node * t;

struct node * lhs;

nargs = Val0(n);

lhs = Tree0(Tree1(n)); /* lhs of subordinate N Field */

if (nargs > 0 && (n->n field[2].n ptr->n col == 123456789 ||

(n->n field[2].n ptr->n type == lhs->n type &&

n->n field[2].n ptr->n field[0].n ptr ==

lhs->n field[0].n ptr))) {
/*

* We have already added the implict self arg to this

* method call in an earlier typinfer iteration, or it

* was supplied in the unicon-generated code; move on.

*/

return;

}
t = dupnode(lhs);

t->n col = 123456789; /* mark this node as visited */

i = node descendants(n);

n->n field[nargs+2].n ptr = NewNode(i);

for (i=nargs; i>0; i--)

n->n field[i+2].n ptr = n->n field[i+1].n ptr;

Val0(n) += 1;

n->n field[2].n ptr = t;

}

Figure 4.4: Implict Self Insertion in Iconc∆
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every i := 1 to 5 do {
(( 1 := ( 1:=

k.nodes table[i])) &

(if 1["add opening"] then 1.add opening()

else ( 1. m.add opening( 1)))) ;

};

Figure 4.5: Subexpression Propagation Example

The model used by Iconc∆ to evaluate subexpressions during type infer-

encing has been modified. The necessity of this modification was exposed during

the analysis of code transformation experiments that did not provide semantic

closure for a specific domain of expressive inputs. Expressions of the form

e1 := e2

were incorrectly evaluated if subexpression e2 contained an assignment to the

same l-value represented by subexpression e1. The sequence of types assumed by

an Icon variable during a chain of assignments was in some cases not being prop-

agated beyond the first subexpression in which an assignment was made to said

variable. This applicative anomaly was perturbed by generating code in Unicon∆

that aggressively reused temporary variables. An example of code generated by

Unicon∆ that provoked this behavior is shown in Figure 4.5. In this example, the

type held in the temporary 1 was not propagated to the expression containing

the ultimate assignment to 1, and the code generated by Iconc∆ for the entire

righthand side of the conjunctive was invalid.
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Investigation revealed that the applicative order of expression evaluation

was being violated during type inferencing in Iconc. The type information asso-

ciated with the innermost assignment to 1 in Figure 4.5 was being cleared in

order to produce the type information pertaining to the ultimate assignment to

1. The immediate workaround for this problem was to implement transforma-

tions in Unicon∆ that were lax in their use of temporary variables. The semantic

analysis phase of Iconc∆ was eventually modified to perform an additional check

during type inferencing to ensure that type information associated with a vari-

able is not cleared before said information is used to update the type information

associated with the same variable.

4.3 Code Generation

The code generation phase of Iconc∆ has been modified to capitalize on

the modifications introduced in Section 4.1 that permit compile-time differentia-

tion between records representing class instances and records representing records.

The primary motivation behind these modifications is to increase the efficiency of

method invocations in compiled Unicon programs.

Logic has been added inside Iconc∆ to examine field references during code

generation. Any detected references to fields within records that represent class

instances are passed to additional logic that queries the vtbl (virtual table) of the

represented class to perform symbol resolution. If a field reference is an invocation
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and the record containing the field represents a class instance, control is passed

to additional logic that generates an invocation of the resolved method. Method

invocations are generated using generic Icon descriptors so that the run-time re-

assignment of methods will not produce erroneous results.
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CHAPTER 5

OPTIMIZATIONS IN COMPILED TARGETS

5.1 Representation of Class Instances

This section describes a proposed Uniconc optimization that fundamentally

modifies the representation of class instances in compiled Unicon targets. This

optimization is aggressive and fairly complex. This optimization is primarily

time-directed, but also decreases the space required to represent a Unicon class

instance in compiled Unicon targets.

5.1.1 Background

A series of transformations is performed on Unicon source code to produce

Icon source that is translated by the Icon translator Icont, and subsequently ex-

ecuted by the Icon interpreter Iconx. A sample Unicon program for illustrative

purposes appears in Appendix A.

Classes are not native to Icont or Iconx. As such, the sample program

depicted in Appendix A is translated into a collection of procedures and records

recognized as traditional Icon constructs by Icont and Iconx. Transformations

pertaining to inheritance, method resolution, etc., are performed on the Unicon

source to produce semantically equivalent procedural code acceptable to Icont.
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The code generated by Unicon for the sample program depicted in Appendix A

is shown in Appendix B.

It can be seen in Appendix B that the current code generation model pro-

duces two record declarations to represent the fifo class. The record fifo methods

contains a field for each member method of a fifo class. A single instance of

a fifo methods record is created at run-time and shared by all fifo objects.

Each fifo instance refers to this methods vector through the m field of its cor-

responding record fifo state. One fifo state record instance is created for

each run-time fifo object. The fifo state record contains fields for all mem-

ber variables in a fifo instance, a field for the implicit self member specific to

object-oriented programming languages, and the aforementioned methods vector

m.

A code snippet from Appendix B illustrating the internal representation

of a Unicon object in the procedural realm of Icon appears in Figure 5.1. The

procedure fifo represents the constructor of a fifo object. The first call to

this constructor instantiates a fifo methods record named fifo oprec con-

taining all procedures representing the methods contained in the fifo class. The

procedure fifo creates an instance of the fifo state record, populates the

m and s fields with the methods vector and self reference, respectively, and

invokes the initially procedure corresponding to the procedure fifo initially

to initialize the explicit member variables of this fifo instance.
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record fifo state( s, m,m data)

record fifo methods(get,peek,put,size,initially,buf)

global fifo oprec, buf oprec

procedure fifo()

local self,clone

initial {
if /fifo oprec then fifoinitialize()

if /buf oprec then bufinitialize()

fifo oprec.buf := buf oprec

}
self := fifo state(&null,fifo oprec)

self. s := self

self. m.initially(self,) | fail

return self

end

procedure fifoinitialize()

initial fifo oprec := fifo methods(fifo get,fifo peek,fifo put,

fifo size,fifo initially)

end

Figure 5.1: Unicon Object as Procedural Entity
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A variable in the Unicon or Icon programming language may assume many

types over its lifetime, and variables in these languages need not be declared

before their use. This flexibility contributes admirably to the rapid development

model for which these languages are renowned, and is simultaneously a source

of consternation when attempting to translate down to a high level language

with a more rigid type system. Iconc employs a type inferencing system based

upon global data flow analysis to determine the types that any variable may take

during specific points of program execution. Empirical data suggests that this

type inferencer is highly effective, particularly because Icon programs typically

make extensive use of global variables. The code generation model of Unicon uses

global variables to represent class-wide data shared among Unicon class instances.

Records are used to implement abstract data types in Icon, and Unicon

classes are themselves represented as Icon records. Because Unicon is an object-

oriented programming language, it provides mechanisms for the encapsulation of

data and operations within an object or l-value, and permits the access or muta-

tion of objects through field references associated with the object to be manipu-

lated. The typing system used by the Iconc type inferencer treats records with

particular rigor. Each Icon record is considered a distinct type, and each field

within each record is itself a distinct type. This treatment of records contributes

to the thorough analysis of the flow of data among Icon variables and facilitates

the generation of efficient C code to represent Icon expressions.
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struct fentry { /* field table entry */

struct fentry *blink; /* link for bucket chain */

char *name; /* name of field */

struct par rec *rlist; /* head of list of records */

};

Figure 5.2: Field Representation in Iconc

struct par rec { /* list of parent records for a field name */

struct rentry *rec; /* parent record */

int offset; /* field’s offset within this record */

int mark; /* used during code generation */

struct par rec *next;

};

Figure 5.3: Parent Record Representation in Iconc

When a field reference is encountered during the parsing of Icon code,

Iconc creates a node in its internal parse tree corresponding to the field reference.

Iconc instantiates a struct fentry of the form seen in Figure 5.2 for each field

encountered. The declaration of a struct fentry reveals that Iconc associates a

list of struct par rec with each field entry. The struct par rec list represents

all records containing a field of a given name. The declaration of struct par rec

appears in Figure 5.3.

All struct fentry instances are hashed using the name of the field as

the hashing key. The struct par rec declaration contains the field offset for the

field of a given name within a particular parent record. When a field reference
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{
/* lkup undo UndoableEdit */

struct b record *r rp = (struct b record *)

BlkLoc(r f.t.d[0] /* self */);

r f.t.d[2].dword = D Var +

((word *)&r rp->fields[8] - (word *)r rp);

VarLoc(r f.t.d[2]) = (dptr)r rp;

}

Figure 5.4: Iconc Code Generated for Unambiguous Field Reference

is encountered in the parse tree during type inferencing, Iconc infers the types

that the record may assume at the location of the field reference during program

execution. Iconc then uses the name of the field to which the code refers to

determine the parent records associated with the field and the offsets of the field

within said parent records. This information is used in the event that a lefthand

side of a field reference may assume multiple types at a given point in program

execution. The information regarding the types that the field may assume during

program execution is stored in a specific area of the parse tree node representing

the field reference.

If the type of a record can be determined unambiguously at compile-time,

Iconc generates code that directly accesses a referenced field in the record. The

code that Iconc generates in this case is of the form seen in Figure 5.4. In this

case, the Iconc type inferencer has determined that the lefthand side of the field

reference at this code point can only take one type during program execution,
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and Iconc has determined the offset of the field to be accessed by examining the

struct par rec corresponding to the type of the record.

Often the Iconc type inferencer determines that the lefthand side of a field

reference at a given code point may assume more than one record type during

program execution. In this case, Iconc examines all records associated with the

types that the lefthand side may assume and, if only a single record contains a

field of the name specified at that code point or if the field to be referenced is at

the same offset within all records containing the field, Iconc is still able to generate

code that is of the form seen in Figure 5.4.

In many cases, however, more than one record contains a field of the name

specified in the field reference, and the offsets for the named field within one or

more of these records is not the same. In this case, Iconc generates a C switch

statement to perform a run-time check to determine the type of the record being

accessed and the offset of the field within that record. The code generated by

Iconc in this instance is of the form shown in Figure 5.5.

In this case Iconc generates code to examine the record number of the

lefthand side of the field reference and assigns the correct field offset based upon

the number (type) of the record being accessed. This information is gathered from

the struct fentry and struct par rec lists at compile-time.
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{
/* lkup MaxChars */

struct b record *r rp = (struct b record *)

BlkLoc(glbl argp[0] /* self */);

dptr r dp; int fld idx;

switch (r rp->recdesc->proc.recnum) {
case 127:

r dp = &r rp->fields[4];

break;

case 285:

r dp = &r rp->fields[1];

break;

default:

if ((fld idx = fldlookup(r rp, "MaxChars")) < 0)

err msg(207, &glbl argp[0] /* self */);

else

r dp = &r rp->fields[fld idx];

}
r f.t.d[11].dword = D Var + ((word *)r dp - (word *)r rp);

VarLoc(r f.t.d[11]) = (dptr)r rp;

}

Figure 5.5: Iconc Code Generated for Ambiguous Field Reference

46



5.1.2 The Proposed Optimization

This optimization originated as a time-directed optimization during the

experimentation with and analysis of C code generated for Unicon source. Since

Unicon is object-oriented, an obvious path to faster generated code seemed to

be through the tailoring of field references. The reader will recall that a method

reference in Unicon source is actually presented as a pair of field references to

Iconc. The first reference is to obtain the m field (methods vector) of the object,

and the second is to access the desired field containing the desired method. The

primary goal at the outset of this optimization work was to eliminate this extra

field reference in compiled Unicon targets.

The first step toward eliminating the extra field reference for method in-

vocations in compiled Unicon targets was to modify the Unicon code generation

model. Unicon∆ was modified to eliminate all references to m and s in gener-

ated code targeted for Iconc∆. The translation of a Unicon class into Icon records

was modified to facilitate the removal of m and s. The code generated by

Unicon∆ for the sample program depicted in Appendix A now appears as shown

in Appendix C.

Comparing the generated code in Appendix C with the generated code

depicted in Appendix B reveals several points of interest worthy of discussion.

The record fifo methods declaration and its instance global fifo oprec are
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the same in both of these appendices. This is due to the fact that the proposed

optimization retains the previous behavior of using a single, shared methods vector

among all instances of a Unicon class. The previous representation of the fifo

class in Appendix B

record fifo state( s, m,m data)

record fifo methods(get,peek,put,size,initially,buf)

now appears as

record fifo mdw inst mdw(m data,get,peek,put,size,initially,buf)

record fifo methods(get,peek,put,size,initially,buf)

in the code generated by Unicon∆ as modified for this proposed optimization. The

reader will immediately note that the fifo mdw inst mdw declaration, the analog

of the fifo state declaration under the previous translation model, has more

fields than the previous fifo state, and that the record fifo mdw inst mdw

declaration contains fields that are redundant with those contained in the record

fifo methods declaration. This is intended.

The field redundancy between the fifo methods and fifo mdw inst mdw

records under the proposed optimization is a bit of trickery directed at the Iconc∆

parser. This field redundancy leads Iconc∆ to permit the notation
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r.add() invocation P

where

r. m.add() invocation O

was previously required. When Iconc∆ parses invocation P, it determines that

invocation P is syntactically correct due to this intentional field redundancy. After

type inferencing is complete, the redundant fields in the struct rentry of the

struct par rec that Iconc∆ builds to represent the struct fifo mdw inst mdw

are removed. This removal makes these fields and their offsets inaccessible to

the Iconc∆ code generator. The removal of redundant fields from Iconc records

representing Unicon class instances is accomplished by the source code depicted

in Figure 5.6.

All field references are examined during the code generation phase of

Iconc∆. If a given field reference is an invocation and the type of the field is

of one or more Unicon class record instances, control is passed to additional logic

added inside Iconc∆ to resolve the particular vector table to which the reference

is directed.

5.1.3 Results

The reader will recall that the code to add a datum to a fifo as it appears

in the sample program in Appendix A is f.put("1st") as shown in the procedure

fifo test. A snippet of code generated by Iconc to perform the above invocation
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static

void

adjust class recs(recs)

struct rentry * recs;

{
int nflds;

char * p, * q;

struct fldname * f;

struct rentry * rinst;

struct rentry * rmeth;

for (rinst=recs; rinst; rinst=rinst->next) {
if ((p = strstr(rinst->name, " mdw inst mdw")) == NULL)

continue;

for (rmeth=rinst->next; rmeth; rmeth=rmeth->next) {
if ((q = strstr(rmeth->name, " methods")) == NULL)

continue;

if (p - rinst->name != q - rmeth->name)

continue;

if (strncmp(rinst->name, rmeth->name, p - rinst->name))

continue;

nflds = rinst->nfields - rmeth->nfields;

while (rinst->nfields > nflds) {
f = rinst->fields;

rinst->fields = rinst->fields->next;

free(f);

rinst->nfields--;

}
break;

}
}

}

Figure 5.6: Record Field Removal in Iconc∆
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using the methodology existing prior to this proposed optimization appears in

Figure 5.7. Under this proposed optimization, Iconc∆ generates code to perform

this same invocation as shown in Figure 5.8.

Consideration of Figure 5.7 and Figure 5.8 reveals that an extra field refer-

ence is indeed saved using the proposed optimization. The savings in time realized

by this optimization will be proportional to the number of method invocations exe-

cuted by a compiled Unicon program. Another effect of the proposed optimization

is the decrease of run-time space required to represent a Unicon object in code

generated by Iconc∆. The space required to represent two pointers in compiled

Unicon targets is eliminated for each run-time instance of a Unicon class under

the proposed optimization because the fields m and s are no longer used. This

side effect will likely prove beneficial in large-scale object-oriented applications

where Unicon is typically deployed.

5.2 Invocations

This section describes a proposed Uniconc optimization that modifies nu-

meric parameters passed to invocations in compiled Unicon and Icon targets. This

optimization is primarily time-directed.

5.2.1 Background

The RTL∆ contains a generalized invocation function called invoke. Code

generated by Iconc and Iconc∆ often invokes invoke in order to accomplish the
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L30: ; /* is record */

{
struct b record *r rp = (struct b record *)

BlkLoc(r f.t.d[0]/* f */);

/* mdw: collapsed m switch */

r f.t.d[3].dword = D Var +

((word *)&r rp->fields[1] - (word *)r rp);

VarLoc(r f.t.d[3]) = (dptr)r rp;

}
deref(&r f.t.d[3], &r f.t.d[3]);

if ((r f.t.d[3]).dword == D Record)

goto L31 /* is record */;

err msg(107, &r f.t.d[3]);

L31: ; /* is record */

{
struct b record *r rp = (struct b record *) BlkLoc(r f.t.d[3]);

dptr r dp; int fld idx;

switch (r rp->recdesc->proc.recnum) {
case 1:

case 3:

case 5:

r dp = &r rp->fields[2];

break;

default:

if ((fld idx = fldlookup(r rp, "put")) < 0)

err msg(207, &r f.t.d[3]);

else

r dp = &r rp->fields[fld idx];

}
r f.t.d[2].dword = D Var + ((word *)r dp - (word *)r rp);

VarLoc(r f.t.d[2]) = (dptr)r rp;

}
r f.t.d[3].dword = D Var;

r f.t.d[3].vword.descptr = &r f.t.d[0] /* f */;

r f.t.d[4].vword.sptr = "1st";

r f.t.d[4].dword = 3;

invoke(3, &r f.t.d[2], &r f.t.d[5], sig 28);

L29: ; /* bound */

Figure 5.7: Sample Method Invocation in Iconc
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L12: ; /* is record */

{
/* mi: lkup put in fifo oprec */

struct b record *r rp = (struct b record *)

BlkLoc(globals[17]);

r f.t.d[2].dword = D Var +

((word *)&r rp->fields[2] - (word *)r rp);

VarLoc(r f.t.d[2]) = (dptr)r rp;

}
r f.t.d[3].dword = D Var;

r f.t.d[3].vword.descptr = &r f.t.d[0] /* f */;

r f.t.d[4].vword.sptr = "1st";

r f.t.d[4].dword = 3;

invoke(3, &r f.t.d[2], &r f.t.d[5], sig 13);

Figure 5.8: Sample Method Invocation in Iconc∆

int invoke(nargs, args, rslt, succ cont)

int nargs;

dptr args;

dptr rslt;

continuation succ cont;

Figure 5.9: Signature of invoke Function

invocation of a procedure or function represented by a procedure descriptor or

a string descriptor. The signature of invoke appears in the RTL∆ as shown

in Figure 5.9. The dptr type shown in Figure 5.9 is a pointer to a descriptor.

Descriptors are used in the RTL∆ and the Icon VM to generically describe the type

and value of Icon and Unicon run-time entities. A typical invocation of invoke

before acted upon by this proposed optimization is shown in Figure 5.10.
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r f.t.d[6].dword = D Integer;

r f.t.d[6].vword.integr = 3;

r f.t.d[3].dword = D Var;

r f.t.d[3].vword.descptr = &r f.t.d[0] /* f */;

r f.t.d[4].vword.sptr = "1st";

r f.t.d[4].dword = 3;

invoke(r f.t.d[6].vword.integr, &r f.t.d[2], &r f.t.d[5],

sig 28);

L29: ; /* bound */

Figure 5.10: Sample Invocation in Uniconc Before Optimization

5.2.2 The Proposed Optimization

This optimization adds logic to Iconc∆ in order to determine at compile-time

the value held by the integer descriptor that is declared as the formal argument

nargs for each invocation of the invoke function. This optimization is enabled by

a Uniconc command-line option. The logic added to Iconc∆ by this optimization

creates a temporary compile-time descriptor which is marked to be accessed as an

integer literal containing the value of the integer descriptor that would normally

be used to accomplish the invocation. This temporary descriptor is used by the

Iconc∆ code generator to populate the codestream with the integer literal itself

rather than the sequence of field references that are normally used to access the

integer literal within the given descriptor. Figure 5.11 depicts the result of this

proposed optimization. The invoke function being used to accomplish the invo-

cation of an Icon procedure in a compiled target shown at the end of Figure 5.11

reveals that the logic added to Iconc∆ by this proposed optimization indeed in-
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r f.t.d[3].dword = D Var;

r f.t.d[3].vword.descptr = &r f.t.d[0] /* f */;

r f.t.d[4].vword.sptr = "1st";

r f.t.d[4].dword = 3;

invoke(3, &r f.t.d[2], &r f.t.d[5], sig 28);

L29: ; /* bound */

Figure 5.11: Sample Invocation in Uniconc After Optimization

serts an integer literal in the codestream where previously there were a sequence

of field references. The logic added to Iconc∆ that accomplishes this substitution

is shown in Figure 5.12.

5.2.3 Results

Consideration of Figure 5.10 and Figure 5.11 indicates that eleven field

references, three array subscript operations, and two assignment operations are

eliminated at run-time for each invocation of invoke acted upon by this proposed

optimization. This proposed optimization only acts upon those invocations that

are not already correctly inlined by Iconc, so the aforementioned benefit is realized

if and only if the previously existing Iconc code failed to reduce the descriptor to

an integer literal.

5.3 Dereferences

This section describes a proposed Uniconc optimization that generates in-

line C code in certain cases where a call to the deref RTL∆ function would

normally be generated in compiled Unicon and Icon targets. This optimization is
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static

void

sub ilc fncall explicit arg(argilc, protoilc, cd, indx)

struct il c * argilc;

struct il c * protoilc;

struct code * cd;

int indx;

{
int loctype;

for (; argilc && protoilc; argilc=argilc->next,

protoilc=protoilc->next) {
if (argilc->il c type != ILC Ref) {

/* process nonmodifying arg references only */

sub ilc(argilc, cd, indx);

continue;

}
loctype = cur symtab[argilc->n].loc->loc type;

if (loctype != V Temp && loctype != V NamedVar) {
/* process args for temp locs only */

sub ilc(argilc, cd, indx);

continue;

}
if (protoilc->s == NULL ||

strncmp("C integer", protoilc->s, 9)) {
/* currently process only C integer type */

sub ilc(argilc, cd, indx);

continue;

}
cd->ElemTyp(indx) = A ValLoc;

cd->ValLoc(indx) = loc cpy(cur symtab[argilc->n].loc,

M CInt);

}
}

Figure 5.12: Inlining Integer Arguments in Iconc∆
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primarily time-directed.

5.3.1 Background

Variables in Icon and Unicon may assume many types during the lifetime

of a program. The implementors of the Icon interpreter developed the notion of

a descriptor to generically describe the type and value of a given Icon variable.

This method of description is also used in the Icon run-time library, and was

subsequently adopted by Iconc. The declaration of a descriptor is shown in Fig-

ure 1.1. Performance analysis of compiled targets using profiling tools indicates

that the typical Icon or Unicon program spends an appreciable amount of time

dereferencing descriptors in the RTL∆ deref function.

5.3.2 The Proposed Optimization

When the types of the operands to the deref operation can be reliably

determined at compile-time, there are situations where the functionality provided

by the deref function can be generated directly in the codestream without enter-

ing the RTL∆. In the event that the entity being dereferenced is not a variable,

or is a “normal” variable, the code contained in the deref function is simple and

should provide an opportunity for inlining.

Iconc has been modified to examine the operands of the deref operation

and to generate the inline equivalent of a deref call where appropriate. This

optimization is enabled by a Uniconc command-line option. This optimization
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deref(&r f.t.d[5], &r f.t.d[5]);

Figure 5.13: Code Generated Before deref Optimization

is intended to act only in the case where the dereferenced entity is a “simple”

variable, or is not a variable at all.

5.3.3 Results

A snippet of code generated by Iconc∆ without the proposed optimization

is shown in Figure 5.13. In this snippet, the result of O114 subsc is used as

both the source and destination of a dereferencing operation via the RTL∆ deref

function.

A snippet of code generated by Iconc∆ for the same source with the pro-

posed optimization enabled is shown in Figure 5.14. The call to deref in Fig-

ure 5.13 has been replaced with the inlined equivalent of a deref call in Fig-

ure 5.14. It should be noted that VarLoc and Offset are macros in the generated

code, so no function call is therefore being made by the inlined substitute for the

call to the deref function in the RTL∆.

It is likely that the methodology employed by this particular optimization

to circumvent a call to an RTL∆ operation can be applied to other RTL∆ opera-

tions in a similar fashion. Applying this methodology to other RTL∆ functions is

a potential subject of future experimentation.
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r f.t.d[5] = *(dptr)((word *)VarLoc(r f.t.d[5]) +

Offset(r f.t.d[5]));

Figure 5.14: Code Generated After deref Optimization
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CHAPTER 6

METRICS

6.1 Overview

Uniconc can produce compiled or interpreted Unicon or Icon targets. The

purpose of this chapter is to quantify the speedup provided by Uniconc to com-

piled versus interpreted Unicon code. This speedup is compared to the speedup

provided by Uniconc to compiled versus interpreted Icon code. A representative

set of programs were chosen to catalogue the important functional features of

Icon and Unicon while providing a comparative analysis of these features. The

set of programs contained herein is by no means exhaustive. All measurements

were taken on an AMD64 dual-core dual-processor machine running linux (Fedora

Core 3). Each processor has a clock speed of 1790.9 MHz and has 1MB cache.

6.2 Invocations

Invocations are a cornerstone of any programming language. Difficulties

arise when attempting to compare invocations in procedural languages to invo-

cations in object-oriented languages due to the fact that invocations in object-

oriented languages are fundamentally different than invocations in procedural

languages.
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procedure p()

return;

end

procedure main(argv)

local n, clk;

n := integer(argv[1]);

clk := &time;

while (n > 0) do {
p();

n -:= 1;

}
clk := &time - clk;

write("time: ", clk);

end

Figure 6.1: Icon Program Measuring Invocations

Figure 6.1 is an Icon program used to measure the speed of invocations in

compiled and interpreted Icon targets. Figure 6.2 contains a Unicon program used

to measure the speed of invocations in compiled and interpreted Unicon targets.

All targets, compiled and interpreted, were generated by the same version of

Uniconc. Each target was invoked with a single command-line argument in order

to accomplish 10,000,000 invocations. The measurements depicted are the average

of three runs of each program. The results are shown below.

Target average time (ms)
compiled Icon 703
interpreted Icon 8,560

Icon speedup 1,217%
compiled Unicon 1,190
interpreted Unicon 10,150

Unicon speedup 853%
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class o()

method p()

return;

end

end

procedure main(argv)

local n, x, clk;

x := o();

n := integer(argv[1]);

clk := &time;

while (n > 0) do {
x.p();

n -:= 1;

}
clk := &time - clk;

write("time: ", clk);

end

Figure 6.2: Unicon Program Measuring Invocations
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procedure tak(x, y, z)

if not (y < x) then

return z

else

return tak(tak(x-1, y, z), tak(y-1, z, x), tak(z-1, x, y));

end

procedure main(argv)

tak(integer(argv[1]), integer(argv[2]), integer(argv[3]));

end

Figure 6.3: Icon Takeuchi Function

Figure 6.3 is an Icon program using the Takeuchi function to measure the

speed of recursive invocations in compiled and interpreted Icon targets. Figure 6.4

contains a Unicon program using the Takeuchi function to measure the speed of

recursive invocations in compiled and interpreted Unicon targets. All targets,

compiled and interpreted, were generated by the same version of Uniconc. Each

target was invoked with a single command-line argument of the form tak 27 18

9. The measurements depicted are the average of three runs of each program

taken with the linux time(1) utility. The results are shown below.

Target average time (ms)
compiled Icon 500
interpreted Icon 11,400

Icon speedup 2,280%
compiled Unicon 2,070
interpreted Unicon 13,600

Unicon speedup 657%

It is apparent that the speedup afforded compiled Unicon invocations by
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class tak()

method comp(x, y, z)

if not (y < x) then

return z

else

return comp(comp(x-1, y, z), comp(y-1, z, x),

comp(z-1, x, y));

end

initially(x, y, z)

comp(x, y, z);

return;

end

procedure main(argv)

local t;

t := tak(integer(argv[1]), integer(argv[2]), integer(argv[3]));

end

Figure 6.4: Unicon Takeuchi Function

Uniconc is not on par with the speedup afforded compiled Icon invocations by

Uniconc. The results are not discouraging, but certainly indicate that further

research in this area is necessary.

6.3 Field References

Field references are a mainstay of object-oriented programs. The speed at

which a field reference is accomplished is of paramount concern when evaluating

the utility of an object-oriented language.

Figure 6.5 is an Icon program used to measure the speed of field references

in compiled and interpreted Icon targets. Figure 6.6 contains a Unicon program
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record rec(x)

procedure main(argv)

local n, r, clk;

n := integer(argv[1]);

r := rec(11);

clk := &time;

while (n > 0) do {
v := r.x;

n -:= 1;

}
clk := &time - clk;

write("time: ", clk);

end

Figure 6.5: Icon Program Measuring Field References

used to measure the speed of field references in compiled and interpreted Unicon

targets. All targets, compiled and interpreted, were generated by the same version

of Uniconc. Each target was invoked with a single command-line argument in

order to accomplish 10,000,000 field references. The measurements depicted are

the average of three runs of each program. The results are shown below.

Target average time (ms)
compiled Icon 760
interpreted Icon 8,500

Icon speedup 1118%
compiled Unicon 760
interpreted Unicon 8,610

Unicon speedup 1133%

The results indicate that the speedup afforded compiled Unicon field refer-

ences by Uniconc is similar to the speedup afforded compiled Icon field references
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class o(m x)

method run(n)

local v, clk;

clk := &time;

while (n > 0) do {
v := self.m x;

n -:= 1;

}
clk := &time - clk;

write("time: ", clk);

end

initially(n)

run(n);

end

procedure main(argv)

local n, r;

n := integer(argv[1]);

r := o(n);

end

Figure 6.6: Unicon Program Measuring Field References
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by Uniconc.

6.4 General Programs

The quicksort algorithm was selected as a benchmark primarily because of

its ubiquity. It is also recursive, and sorts in place so the number of allocations

is likely reduced. Figure 6.7 shows the Icon implementation of quicksort used for

this measurement, and Figure 6.8 shows the Unicon implementation of quicksort

used. All targets, compiled and interpreted, were generated by the same version

of Uniconc. Each target was invoked with a single command-line argument in

order to accomplish the sorting of 200,000 pseudorandom values. The measure-

ments depicted are the average of three runs of each program taken with the linux

time(1) utility.

Target average time (ms)
compiled Icon 1,090
interpreted Icon 4,790

Icon speedup 440%
compiled Unicon 1,260
interpreted Unicon 6,090

Unicon speedup 483%

The seed used by the pseudorandom number generation facility in Icon

and Unicon is the same for each program, and the values being sorted by the

programs are therefore the same. The results indicate that the speedup afforded

compiled Unicon by Uniconc for such a sorting program is comparable to the

speedup afforded compiled Icon by Uniconc.
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procedure partition(a, p, r)

local x, i, j;

x := a[r];

i := p - 1;

every j := p to r-1 do {
if (a[j] <= x) then {

i +:= 1;

a[i] :=: a[j];

}
}

a[i+1] :=: a[r];

return i+1;

end

procedure quicksort(a, p, r)

if (p < r) then {
q := partition(a, p, r);

quicksort(a, p, q-1);

quicksort(a, q+1, r);

}
end

procedure main(args)

local a, i, n;

a := list();

n := (integer(\args[1]) | 32768);

every i := 1 to n do

put(a, ?1048576);

quicksort(a, 1, *a);

end

Figure 6.7: Icon Quicksort Program
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class sorter(m a)

method partition(p, r)

x := m a[r];

i := p - 1;

every j := p to r-1 do {
if (m a[j] <= x) then {

i +:= 1;

m a[i] :=: m a[j];

}
}

m a[i+1] :=: m a[r];

return i+1;

end

method quicksort(p, r)

if (p < r) then {
q := partition(p, r);

quicksort(p, q-1);

quicksort(q+1, r);

}
return;

end

initially(n)

m a := list();

/n := 32768;

every i := 1 to n do

put(m a, ?1048576);

quicksort(1, *m a);

return;

end

procedure main(args)

local inst;

inst := sorter(args[1]);

end

Figure 6.8: Unicon Quicksort Program
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Appendix E contains the listing for an I/O-intensive Unicon program that

creates an arbitrary number of Unix resource files containing an arbitrary number

of topics in each file. Appendix D contains the listing for the Icon counterpart

to the aforementioned Unicon program. All targets, compiled and interpreted,

were generated by the same version of Uniconc. Each target was invoked with

command-line arguments to accomplish the creation of 50 resource files, with each

file containing 500 topics. The filesystem was cleared of resource files created

for a given program run after each run was measured. A new class instance

(in Unicon) or record instance (in Icon) is created for each resource file. The

measurements depicted are the average of three runs of each program taken with

the linux time(1) utility.

Target average time (ms)
compiled Icon 1,030
interpreted Icon 4,960

Icon speedup 481%
compiled Unicon 1,080
interpreted Unicon 5,060

Unicon speedup 468%
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CHAPTER 7

RELATED WORK
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CHAPTER 8

FUTURE WORK

8.1 Limitations

8.1.1 Scalability

Uniconc currently has a scalability issue that prohibits the compilation

of large programs with compuatational resources available to the typical user.

Sources of this scalability issue are:

• The parse tree for an entire program is maintained in memory by Iconc∆

for the duration of compilation.

• The representation of type vectors used by Iconc∆ can grow very large

when many distinct types are used within a program. This is particularly evident

in Unicon programs where many classes (records) are used.

• The representation of type vectors used by Iconc∆ can become pathologi-

cally sparse when many distinct types are used within a program. This sparseness

tends to increase as type inferencing progresses.

Experiments to improve the scalability of Uniconc during the course of

this project have thus far proven unsuccessful. The preliminary underpinnings of

further Uniconc scalability experiments are currently being planned. This issue

will likely be a primary focus of continuing Uniconc reasearch.
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class f00(x)

method reassign member var(p)

x := p;

x();

end

end

Figure 8.1: Unicon Member Variable Reassignment

8.1.2 Class Member Reassignments

The Iconc∆ code generator currently does not correctly differentiate be-

tween methods and procedures in the case where the member variable of a class

instance is reassigned with a procedure. Figure 8.1 depicts a situation where the

Iconc∆ code generator currently fails. In particular, the code generated for the

invocation of the member variable x in class f00 shown in Figure 8.1 will be

invalid. This is because the lefthand side of the generated self.x() invocation is

a class, so an implicit self argument will be added to the invocation by the Iconc∆

code generator. A potential avenue of approaching the solution to this error has

been devised, but the experimentation required to achieve a solution has not yet

been accomplished.
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CONCLUSION
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APPENDICES



APPENDIX A

SAMPLE UNICON PROGRAM

class buf(m data)

abstract method get()

abstract method peek()

abstract method put()

abstract method size()

initially(val, cnt)

self.m data := list()

if (\cnt) then {
every i := 1 to cnt do

put(m data, val)

}
else if (\val) then

put(m data, val)

end

class lifo : buf()

method get()

return pop(m data)

end

method peek()

if (size() > 0) then

return m data[1]

end

method put(val)

push(m data, val)

return

end

method size()

return *self.m data

end

initially()

write("lifo::initially")

self$buf.initially()

end

class fifo : buf()
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method get()

return ::get(m data)

end

method peek()

if ((n := size()) > 0) then

return m data[n]

end

method put(val)

::put(m data, val)

return

end

method size()

return *self.m data

end

initially()

write("fifo::initially")

self$buf.initially()

end

procedure fifo test()

local f, n

f := fifo()

f.put("1st")

f.put("2nd")

n := f.get()

write("fifo-test: n: ", n)

write("fifo-test: n: ", f.get())

end

procedure lifo test()

local l, n

l := lifo()

l.put("1st")

l.put("2nd")

n := l.get()

write("lifo-test: n: ", n)

write("lifo-test: n: ", l.get())

end
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procedure main(argv)

fifo test()

lifo test()

end
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APPENDIX B

GENERATED ICON FOR SAMPLE UNICON PROGRAM

#line 0 "main.icn"

procedure buf get(self)

runerr(700, "method get()")

end

procedure buf peek(self)

runerr(700, "method peek()")

end

procedure buf put(self)

runerr(700, "method put()")

end

procedure buf size(self)

runerr(700, "method size()")

end

procedure buf initially(self,val,cnt)

#line 8 "main.icn"

write("buf::initially");

self.m data := list();

if (\cnt) then {
every i := 1 to cnt do

self.put(self.m data,val);

}
else if (\val) then

self.put(self.m data,val);

return

end
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record buf state( s, m,m data)

record buf methods(get,peek,put,size,initially)

global buf oprec

procedure buf(val,cnt)

local self,clone

initial {
if /buf oprec then bufinitialize()

}
self := buf state(&null,buf oprec)

self. s := self

self. m.initially(self,val,cnt) | fail

return self

end

procedure bufinitialize()

initial buf oprec := buf methods(buf get,buf peek,buf put,

buf size,buf initially)

end

procedure lifo get(self)

#line 20 "main.icn"

return pop(self.m data);

end

procedure lifo peek(self)

#line 23 "main.icn"

if (self.size()>0)then

return self.m data[1];

end

procedure lifo put(self,val)

#line 27 "main.icn"

push(self.m data,val);

return;

end

procedure lifo size(self)
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#line 31 "main.icn"

return *self.m data;

end

procedure lifo initially(self)

#line 34 "main.icn"

write("lifo::initially");

(self. m.buf. initially(self));

return

end

record lifo state( s, m,m data)

record lifo methods(get,peek,put,size,initially,buf)

global lifo oprec, buf oprec

procedure lifo()

local self,clone

initial {
if /lifo oprec then lifoinitialize()

if /buf oprec then bufinitialize()

lifo oprec.buf := buf oprec

}
self := lifo state(&null,lifo oprec)

self. s := self

self. m.initially(self,) | fail

return self

end

procedure lifoinitialize()

initial lifo oprec := lifo methods(lifo get,lifo peek,lifo put,

lifo size,lifo initially)

end

procedure fifo get(self)

#line 40 "main.icn"

return get(self.m data);

end

procedure fifo peek(self)
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#line 43 "main.icn"

if ((n := self.size())>0)then

return self.m data[n];

end

procedure fifo put(self,val)

#line 47 "main.icn"

put(self.m data,val);

return;

end

procedure fifo size(self)

#line 51 "main.icn"

return *self.m data;

end

procedure fifo initially(self)

#line 54 "main.icn"

write("fifo::initially");

(self. m.buf. initially(self));

return

end

record fifo state( s, m,m data)

record fifo methods(get,peek,put,size,initially,buf)

global fifo oprec, buf oprec

procedure fifo()

local self,clone

initial {
if /fifo oprec then fifoinitialize()

if /buf oprec then bufinitialize()

fifo oprec.buf := buf oprec

}
self := fifo state(&null,fifo oprec)

self. s := self

self. m.initially(self,) | fail

return self

end
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procedure fifoinitialize()

initial fifo oprec := fifo methods(fifo get,fifo peek,fifo put,

fifo size,fifo initially)

end

#line 58 "main.icn"

procedure fifo test();

local f, n;

f := fifo();

(f. m.put(f,"1st"));

(f. m.put(f,"2nd"));

n := (f. m.get(f));

write("fifo-test: n: ", n);

write("fifo-test: n: ", (f. m.get(f)));

end

procedure lifo test();

local l, n;

l := lifo();

(l. m.put(l,"1st"));

(l. m.put(l,"2nd"));

n := (l. m.get(l));

write("lifo-test: n: ", n);

write("lifo-test: n: ", (l. m.get(l)));

end

procedure main(argv );

fifo test();

lifo test();

end
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APPENDIX C

GENERATED ICON FOR SAMPLE UNICON PROGRAM UNDER

PROPOSED OPTIMIZATION

#line 0 "main.icn"

procedure buf get(self)

runerr(700, "method get()")

end

procedure buf peek(self)

runerr(700, "method peek()")

end

procedure buf put(self)

runerr(700, "method put()")

end

procedure buf size(self)

runerr(700, "method size()")

end

procedure buf initially(self,val,cnt)

#line 8 "main.icn"

write("buf::initially");

self.m data := list();

if (\cnt) then {
every i := 1 to cnt do

self.put(self.m data,val);

}
else if (\val) then

self.put(self.m data,val);
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return

end

record buf methods(get,peek,put,size,initially)

record buf mdw inst mdw(m data,get,peek,put,size,initially)

global buf oprec

procedure buf(val,cnt)

local self,clone

initial {
if /buf oprec then bufinitialize()

}
self := buf mdw inst mdw(,buf get,buf peek,buf put,buf size,

buf initially)

self.initially(self,val,cnt) | fail

return self

end

procedure bufinitialize()

initial buf oprec := buf methods(buf get,buf peek,buf put,

buf size,buf initially)

end

procedure lifo get(self)

#line 20 "main.icn"

return pop(self.m data);

end

procedure lifo peek(self)

#line 23 "main.icn"

if (self.size()>0)then

return self.m data[1];

end

procedure lifo put(self,val)

#line 27 "main.icn"

push(self.m data,val);

return;

end
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procedure lifo size(self)

#line 31 "main.icn"

return *self.m data;

end

procedure lifo initially(self)

#line 34 "main.icn"

write("lifo::initially");

(self) & (buf oprec. initially(self));

return

end

record lifo methods(get,peek,put,size,initially,buf)

record lifo mdw inst mdw(m data,get,peek,put,size,initially,buf)

global lifo oprec, buf oprec

procedure lifo()

local self,clone

initial {
if /lifo oprec then lifoinitialize()

if /buf oprec then bufinitialize()

lifo oprec.buf := buf oprec

}
self := lifo mdw inst mdw(,lifo get,lifo peek,lifo put,

lifo size,lifo initially)

self.buf := buf oprec

self.initially(self,) | fail

return self

end

procedure lifoinitialize()

initial lifo oprec := lifo methods(lifo get,lifo peek,

lifo put,lifo size,lifo initially)

end

procedure fifo get(self)

#line 40 "main.icn"

return get(self.m data);
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end

procedure fifo peek(self)

#line 43 "main.icn"

if ((n := self.size())>0)then

return self.m data[n];

end

procedure fifo put(self,val)

#line 47 "main.icn"

put(self.m data,val);

return;

end

procedure fifo size(self)

#line 51 "main.icn"

return *self.m data;

end

procedure fifo initially(self)

#line 54 "main.icn"

write("fifo::initially");

(self) & (buf oprec. initially(self));

return

end

record fifo methods(get,peek,put,size,initially,buf)

record fifo mdw inst mdw(m data,get,peek,put,size,initially,buf)

global fifo oprec, buf oprec

procedure fifo()

local self,clone

initial {
if /fifo oprec then fifoinitialize()

if /buf oprec then bufinitialize()

fifo oprec.buf := buf oprec

}
self := fifo mdw inst mdw(,fifo get,fifo peek,fifo put,

fifo size,fifo initially)
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self.buf := buf oprec

self.initially(self,) | fail

return self

end

procedure fifoinitialize()

initial fifo oprec := fifo methods(fifo get,fifo peek,

fifo put,fifo size,fifo initially)

end

#line 58 "main.icn"

procedure fifo test();

local f, n;

f := fifo();

f.put("1st");

f.put("2nd");

n := f.get();

write("fifo-test: n: ", n);

write("fifo-test: n: ", f.get());

end

procedure lifo test();

local l, n;

l := lifo();

l.put("1st");

l.put("2nd");

n := l.get();

write("lifo-test: n: ", n);

write("lifo-test: n: ", l.get());

end

procedure main(argv );

fifo test();

lifo test();

end
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APPENDIX D

SAMPLE OUTPUT-INTENSIVE ICON PROGRAM

record rc(fname, tbl, cmnt, delim)

procedure rc ctor(file name, comment char, topic delimiter)

local rslt;

rslt := rc(file name, table(), (\comment char | "#"),

(\topic delimiter | ":"));

return rslt;

end

procedure rc iscomment(x, s)

if (match(x.cmnt, s) | (s == "")) then

return;

end

procedure rc numlines(x)

local i;

if (/x.tbl | (*x.tbl = 0)) then

return 0;

every i := 1 to *x.tbl do {
if /x.tbl[i] then

break;

}
return i - 1;

end

procedure rc read(x)

local n, f, i, s;

x.tbl := table();

f := open(\x.fname, "r") | fail;

i := 0;

while (s := read(f)) do {
x.tbl[i +:= 1] := s;

if (rc iscomment(x, s)) then
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next;

n := find(x.delim, s);

x.tbl[trim(s[1:\n])] := rc trimlead(s[\n+*x.delim:0]);
}

close(f);

end

procedure rc trimlead(s)

return reverse(trim(reverse(s)));

end

procedure rc value get(x, topic)

local value;

value := \x.tbl[topic] | fail;

return value;

end

procedure rc value set(x, topic, value)

if /(x.tbl[topic]) then

x.tbl[rc numlines(x)+1] := string(topic) || x.delim ||

string(value);

x.tbl[topic] := string(value);

end

procedure rc write(x)

local f, i, n, s, s2;

f := open(\x.fname, "w") | fail;

every i := 1 to rc numlines(x) do {
s := \x.tbl[i];
if (rc iscomment(x, s)) then {

write(f, s);

next;

}
n := find(x.delim, s);

s2 := trim(s[1:\n]);
write(f, \s2 || x.delim || \x.tbl[\s2]) | write(f, s);

}
close(f);

return;
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end

procedure main(argv)

local stem, nfiles, ntopics;

nfiles := (integer(\argv[1]) | 32);

ntopics := (integer(\argv[2]) | 32);

stem := (\argv[3] | ".rctmp");

test rc create(stem, nfiles, ntopics);

end

procedure test rc create(stem, nfiles, ntopics)

local i, x, fname;

\stem | fail;

while (nfiles > 0) do {
fname := stem || "-" || string(nfiles);

x := rc ctor(fname);

every i := 1 to ntopics do

rc value set(x, "topic-" || string(i), "value-" ||

string(i));

rc write(x);

nfiles -:= 1;

}
end
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APPENDIX E

SAMPLE OUTPUT-INTENSIVE UNICON PROGRAM

class rcfile(fname,tbl,cmnt,delim)

method filename()

return fname;

end

method iscomment(s)

if (match(cmnt, s) | (s == "")) then

return;

end

method numlines()

local i;

if (/tbl | (*tbl = 0)) then

return 0;

every i := 1 to *tbl do {
if /tbl[i] then

break;

}
return i - 1;

end

method read()

local n, f, i, s;

tbl := table();

f := open(\fname, "r") | fail;

i := 0;

while (s := ::read(f)) do {
tbl[i +:= 1] := s;

if (iscomment(s)) then

next;

n := find(delim, s);

tbl[trim(s[1:\n])] := trimlead(s[\n+*delim:0]);
}

close(f);

end

method trimlead(s)

return reverse(trim(reverse(s)));

end

method valueget(topic)
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local value;

value := \tbl[topic] | fail;

return value;

end

method valueset(topic, value)

if /(tbl[topic]) then

tbl[numlines()+1] := string(topic) || delim ||

string(value);

tbl[topic] := string(value);

end

method version()

return verstr;

end

method write()

local f, i, n, s, s2;

f := open(\fname, "w") | fail;

every i := 1 to numlines() do {
s := \tbl[i];
if (iscomment(s)) then {

::write(f, s);

next;

}
n := find(delim, s);

s2 := trim(s[1:\n]);
::write(f, \s2 || delim || \tbl[\s2]) | ::write(f, s);

}
close(f);

return;

end

initially(file name, comment char, topic delimiter)

fname := file name;

cmnt := (\comment char | "#");

delim := (\topic delimiter | ":");

read();

end

procedure main(argv)

local stem, nfiles, ntopics;

nfiles := (integer(\argv[1]) | 32);

ntopics := (integer(\argv[2]) | 32);
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stem := (\argv[3] | ".rctmp");

test rc create(stem, nfiles, ntopics);

end

procedure test rc create(stem, nfiles, ntopics)

local i, rc, fname;

\stem | fail;

while (nfiles > 0) do {
fname := stem || "-" || string(nfiles);

rc := rcfile(fname);

every i := 1 to ntopics do

rc.valueset("topic-" || string(i), "value-" ||

string(i));

rc.write();

nfiles -:= 1;

}
end
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