

An IVIB Primer

Susie Jeffery and Clinton Jeffery

Unicon Technical Report #6b

February 21, 2006

Abstract

Unicon's improved visual interface builder program IVIB offers many more types of widgets than its precursor,
VIB. IVIB also supports colors and fonts, allowing the programmer a wider variety of appearances. Using IVIB
requires at least a passing familiarity with the object-oriented paradigm, especially in order to customize an
interface, or extend it with new behavior. This primer explains the rudiments of using IVIB Version 2 in glorious
click-by-click detail.

Department of Computer Science

New Mexico State University

Las Cruces, NM 88003

This work supported in part by a National Library Medicine Special Information Services ORISE grant.

1

Table of Contents

Introduction 3

Part I A Simple IVIB Application

Hello Ivib 3

Ivib and Event-driven Programming 6

Menu Bar 8

Buttons and Labels 12

The About Box 13

The Help Screen 14

Adding The Code 15

Makefile 17

Running The Program 18

Part II Another Simple IVIB Application

Modeless Dialogs 21

Tables and Tab Sets 28

Capturing Events, Click Counts and GoTo 31

Overlays and Hour Glasses 34

Copy, Cut, Paste, Undo, Redo 36

Tab Jumps, Compound Undo and Redo 42

Table Column Events 45

Conclusions and Future work 47

2

Introduction

Most applications these days provide easy to use, graphical interfaces. For the Unicon programmer, several
options are available to create such an interface. One option is to use the graphics facilities described in the book
"Graphics Programming in Icon" [Gris98]. The Icon Graphics book includes chapters on writing user interfaces
using the vidgets library and its interface builder, VIB. Unfortunately, these facilities are hard to customize,
either with new widgets or with attributes such as colors or fonts. Another option for MS Windows programmers
is to write an interface using MS Windows native facilities available from Icon; they are documented in Icon
Project Document 271, but are very limited.

This report describes how to use Unicon's new GUI toolkit and its interface builder program, IVIB. This package
was written by Robert Parlett with minor improvements by the authors. Compared with the existing Icon-based
tools, Mr. Parlett's toolkit is elegant, feature-rich, extensible, and deep. Unless you are familiar with similar class
libraries, IVIB and its GUI toolkit may seem daunting in its complexity. This report demystifies typical uses of
IVIB Version 2. We hope you come to enjoy it as much as we have. A great deal of additional documentation on
these tools can be found in the book "Programming with Unicon" [Jeff01].

Part I A Simple IVIB Application

Hello, Ivib
Before we delve into a real application, let us create a rhetorical program with a single button that executes a
procedure when we click on it. For the sake of tradition, let's suppose our procedure p() is as follows. Go ahead
and type this procedure in using the ui program or your favorite text editor, and save it to a file named p.icn.

procedure p()
 write("hello, world")
end

To start building our GUI, execute the Ivib program. Below its title bar it has a menu bar with File, Canvas,
Selection, and Objects menus, and below that it has a tool bar that allows you to easily create many kinds of
widget in the GUI library. Below the toolbar is the main Ivib drawing area, called the canvas.

The Button widget is the top leftmost widget in the toolbar. Go ahead and click on it; a button labeled "Button"
appears in the upper left area of the canvas. You can drag it approximately to the center of your canvas area. To
modify aspects of the widget's functionality or appearance, right click on it and select Dialog from the popup
menu. The widget's setup dialog allows you to change all aspects of the widget. The top half of the dialog
controls properties relevant to all widgets, such as position on screen, graphical attributes, and what variable
name will hold the widget. The bottom half of the dialog controls properties specific to the particular type of
widget being modified (in this case, a TextButton). TextButtons have a Label attribute that contains the text on
the face of the button. Click in that text area and change "Button" to "Go!". Then click on the Okay button at the
bottom of the dialog. Your resulting screen might look something like this:

3

At this point, you have created a graphical interface with a button on it. When you save this as go.icn, Ivib will
generate the Unicon source code for the graphical interface, with the Ivib representation of that graphical
interface encoded as a strange looking comment at the end of the file. If you compile it, you can produce a
working program, but it won't do anything when the Go! button is pressed.

4

Ivib and Event-driven Programming
Event-driven programming is writing code in terms of responses to events. You don't own the control flow, the
GUI library does. The GUI library calls certain methods in response to each event; your options are to either
stick your application code directly in those method bodies, or stick calls to your code in those method bodies.

Suppose our procedure p() given above is located in a file p.icn, which will hopefully be true by now. What we
want to do is make the interface call p() whenever the button is pressed. An object (whose class is a subclass of
Dialog in package gui) owns the control flow and processes user input. Each user activity (key press, mouse
click) in the Dialog is turned into an Event object and sent to the interface object being manipulated (the button,
scrollbar, or other widget that was "clicked"). In Ivib, the object's dialog has an Events... tab that allows the
programmer to associate a different handler method with code to handle each kind of event. To sum up: an
interface has a corresponding Dialog class. For each widget foo you can optionally ask for a class variable foo
that holds the actual widget object reference, and can write methods that are called when an event occurs on that
widget.

In order for our button to call our procedure p(), we need to find out (or assign) the button's variable name. To do
this, select the button, right click on it, and open its Dialog. The Name tab contains a Name field that determines
the variable name for this widget. Change the name from "text_button_1" to "go". Your dialog should look
something like this:

Click Okay to exit the dialog. Save the ivib session (File...SaveAs) in file go.icn.

At this point, you can compile go.icn as a standalone program that does nothing (unicon go). But it might be

5

more interesting to tell the dialog what code to execute (namely, a call to the procedure p() mentioned earlier)
when the "go" button is clicked. Go over to the Events tab, click on Add, and associate a method on_go() with
ACTION_EVENT by clicking the Apply button.

Click OK, and then save your file. At this point if you go into file go.icn and look at the code, the Dialog has an
empty method

method on_go(ev)
end

into which we can insert a call to p() using the ui IDE, or emacs or another text editor:

method on_go(ev)
 p()
end

Save go.icn with this call to p() added, and then compile go.icn and p.icn together (unicon go p), and run it
(./go). If successful, this application will run as described and write "Hello, world" to standard output when you
click the button.

Warning! Editing your file with Ivib and a text editor at the same time makes it easy for you to overwrite

6

work done in one tool when you save in another tool. The safest thing is to Quit Ivib when you are editing code,
and quit your editor when you do an Ivib session. In the future we will make Ivib smarter about trying not to lose
your work, and probably integrate it into an IDE so the text editor and Ivib sessions always know when to switch
back and forth.

A Simple IVIB Application
For a more realistic example, we are going to create a simple application that will demonstrate the use of
Buttons, Text List boxes, Menu Bars, Labels, multiple screens, File Input/Output, and error handling. Our
application will contain a main screen with a Menu Bar and a Button. A File Selection Dialog box listing all the
files in a directory will be displayed when the button is pressed. The Menu Bar will have options to Exit, display
the About Box, and display a Help File.

This dazzling example is given in glorious click-by-click detail in order to familiarize you with IVIB and to
teach you many of its capabilities by osmosis. All you should have to do is follow the instructions. Hopefully
you will feel recklessly capable of writing similar applications on your own afterwards.

The Main Screen

First, create a directory where you can save all the files created for this application. Change into this directory,
and launch Ivib (if Ivib is already running, you can click on the File menu's New item). You will see a blank
canvas. We are now going to create a Menu Bar. In particular, we will have a File menu that pulls down to an
Exit command and a Help menu that pulls down to an About box and a Help command.

Menu Bar
Add a Menu Bar by clicking on the Menu component from the Ivib Menu. A Menu Bar with an Edit me item
will be added to the canvas. Right click on it and select the dialog option. The MenuBar setup in the bottom box
of the dialog will look like this:

|

|

-----------Edit me

| |

| |

|

Add the File menu. Select Edit me, hit the edit button, and change the Label field to File. Click Okay.

The tree will now look something like this:

|

|

-----------File

| |<-------------------------------------click here and Add label

|Add the Exit command. Highlight the branch by clicking in the position shown above. The Add label button
will become available; click on it. A new branch labeled Edit me will be added to the branch. Edit this branch by
clicking on the Edit button, change the Label field to say Exit, and switch to the Code tab. Change the object

7

name to exit and then click the Event handler checkbox to create an on_exit() handler method. Before you click
OK the screen should look like:

Press Okay.

The tree will now look something like this:

|

|

-----------File

| |

| |-------------Exit(Txt)

| |

| <---click here to add a menu item

Add the Help menu from the trunk of the tree. Highlight the branch by clicking in the position shown above.
The Add Menu button will become available; click on it. A new branch labeled Edit me will be added to the tree.
Edit this branch by clicking on the Edit button, change the Label field to say Help, and click Okay.

8

The tree will now look something like this:

|

|

-----------File

| |

| |-------------Exit(Txt)|

| |

|

|---------Help

| |<---click here to add a menu label

|

Add the About command. Highlight the branch by clicking in the position shown above. The Add label button
will become available; click on it. A new branch labeled Edit me will be added to the branch. Edit this branch by
clicking on the Edit button, change the Label to About... and select the Code tab. Change the object name to
about and then click the event handler to create an on_about() handler method. Click Okay.

The tree should now look something like this:

|

|

-----------File

| |

| |-------------Exit(Txt)

| |

|

|---------Help

| |

| |------------About

| |<---click here, Add a label

|

Add the Help command. Highlight the branch by clicking in the position shown above. The Add label button
will become available; click on it. A new branch labeled Edit me will be added to the branch. Edit this branch by
clicking on the Edit button, change the label to Help, and switch to the Code tab. Change the object name to
help, and then click the Event handler checkbox to create an on_help() event handler method. Click Okay. The
tree will now look something like this:

9

|

-----------File

| |

| |-------------Exit(Txt)

| |

|

|---------Help

| |

| |------------About(Txt)

| |

| |------------Help(txt)

|

Hit Okay.

Buttons and Labels
Add a Button to the canvas, by clicking on the Button Component from the Ivib Menu Bar. Move the Button to
somewhere near the left side of the canvas. Right click on the Button and select the dialog option. Change the
label to say List Files, then select the Name tab. Change the name to ListBtn and then select the Events tab.
Click on Add to create an on_ListBtn handler method, then click on Apply, and then click Okay.

Add a Message Box Label to the canvas by clicking on the Label component (designated "Abc") on the Ivib
menu bar. Move the label to the bottom of the canvas. Resize the width to almost the size of the canvas and
resize the height to about the same height as the button.

Right click on the Message Box and select the dialog option. Change the label to be empty, then click on the
Name tab. Change the name to MsgBox, then click on the Other tab. Click on the Class variable radio button and
the Draw Border checkbox so that there will be a border around our message box.

Select the Attribs Tab click Add and replace the Edit and me to fg and red respectively. This will change the
foreground color to red.

 Attrib Value

 fg red

Click the Apply button to save the attribute.

Press the Add button and replace the Edit and me with the values below. This will change the font attributes.

 Attrib Value

 font serif,18,bold

Hit the Apply button to save the changes

Hit Okay.

10

Enter the canvas attributes. Select the Canvas menu option Dialog prefs...

On the Attribs tab change the background from pale gray to yellowish white by selecting Add and changing the
fields as follows:

 Attrib Value

 bg yellowish white

Hit the Apply button to save the changes

On the Methods tab, leave the Generate main() procedure button on so the box is checked. We want to put our
main procedure in this file.

On the Code tab, change the Name field to maindialog.

 Name maindialog

Hit Okay.

From Ivib, go to the File menu and save the file.

 File->Save as: main.icn

Make sure you save them in the directory you made for this application

The About Box
We want to create a small canvas for our About box. The About box will contain one Text List containing
application information. From Ivib, go to the File menu and select New and a blank canvas will appear. Resize
the canvas by dragging the bottom right corner so it is about 3/4 the original size.

Add a Text List Box by clicking on the Text List component on the Ivib Menu Bar (this is the one in the upper
right corner). Move it to the center, then right click on it to get the dialog selection. Under the Name tab, change
its name to AboutTxtLst, then select the Other tab and click on. the Class variable radio button. Hit Okay.

Add the canvas attributes. Select the Dialog prefs... item from the Canvas menu.

On the Attribs tab, Add an attribute label with value About Ivib Primer. Click Apply.

On the Methods tab, un-click the Generate main() procedure button so the button is not down. We do not want
a main procedure in this file.

On the Code tab, change the name to aboutdialog. Finally, on the Events tab, click Add and change the event to
MOUSE_PRESS_EVENT and change the method name to on_aboutdialog (this method will quit the dialog).
Click Apply. The screen should look like:

11

Click Okay.

From Ivib, go to the File menu and save the file with the name about.icn.

 File->Save as: about.icn

Make sure you save it in the directory you made for this application.

The Help Screen
We want to create another small canvas for the Help information. This canvas will contain a Text List, a Cancel
Button and a Label for messages. From Ivib, go to the File menu and select New and a blank canvas will appear.
Resize the canvas by dragging the bottom right corner so it is about 3/4 the original size.

Add a Text List Box to this canvas by clicking the Text List component from the Ivib Menu Bar. Move it to the
center and then right click on it to get the dialog attributes. Select the Name tab, and change the name to
HelpTxtLst. Select the Other tab, and click on the Class variable radio button. Click Okay.

Add a Button to the canvas, by clicking on the Button Component from the Ivib Menu Bar. Move the Button to

12

somewhere near the bottom of the canvas below the text box.

Right click on the Button and select the dialog option. Change the Label to Close, and select the Name tab.
Change the name to CloseBtn. On the Events tab, click Add to create an on_CloseBtn() handler method. Click
Apply, and then Okay.

Add a Message Box to the canvas by clicking on the Label component (Abc) on the Ivib menu bar. Move the
label to the bottom of the canvas and resize it to be almost the length of the canvas.

Right click on the Label and select the dialog option. Change the Label field to be empty.

On the Name tab, change the name to MsgBox. On the Other tab, select the Class variable radio button. Click
the Draw Border check box so that there will be a border. Click Okay.

Add the canvas attributes. Select the Ivib Canvas menu's Dialog prefs... item. On the Attribs tab, Add the
attribute label with value Ivib Primer Help. On the Methods tab, un-click the Generate main() procedure button
so the box is not checked. We do not want a main() procedure in this file.

On the Code tab, change the name to helpdialog. Click Okay.

From Ivib, go to the File menu and save the file.

 File->Save as: help.icn

Make sure you save the file in the directory you made for this application.

You can exit out of Ivib now with the File menu's Quit item.

Adding the code
The code is now done for the GUI components. It is in the files main.icn, about.icn, and help.icn.

If you look at the file main.icn you will notice Ivib created a class called maindialog and various methods that
are associated with the components we added. For example, method on_about() will be the method used when
you click on the about menu item on the menu bar. Method init_dialog() is the first method called when the class
is created. It is a good place to initialize variables. It is our job to write the code for these methods.

If any of the components are not spelled correctly, correct them using Ivib to keep the program code consistent
with the graphics. However, when you change the names using Ivib, Ivib will add your new names, but not
delete the old names. You may want to search the file for any references to the old names and remove all
methods and references to the old names. If you do not remove the old names, your code will still work, but you
will have unused methods and objects cluttering up the file. Also, remember Unicon is case sensitive. All
references to the objects must be the same case.

Main Dialog Class. Edit the file main.icn using your favorite editor. This file contains the main procedure,
which starts the application by displaying the main screen. Some of the methods in the file main.icn are shown
below:

import gui

13

$include "guih.icn"
#
maindialog is the class created by Ivib in the file main.icn
#
class maindialog : Dialog(MsgBox)
 ...
 method on_ListBtn(ev)
 end

 method on_about(ev)
 end

 method on_exit(ev)
 end

 method on_help(ev)
 end
 ...
end # dialog class

Find the main() procedure and change it if needed so it looks as shown below. This will cause the main screen to
be displayed when the program starts up.

procedure main()
 local d
 d := maindialog()
 d.show_modal()
end

Add code so the About Canvas is displayed when the About Menu item is selected. Add the following code to
on_about():

 method on_about(ev)
 aboutdialog().show_modal()
 end

Add code so the Help Canvas is displayed when the Help Menu item is selected. Add the following code to
on_help():

 method on_help(ev)
 helpdialog().show_modal()
 end

We also need to add code to terminate the application when the Exit menu item is selected. Add the dispose()
function to on_exit().

 method on_exit(ev)
 dispose()
 end

Save this file as main.icn. Make sure you save it in the directory you made for this application.

Makefile
The following instructions mainly apply to Linux/UNIX users. Now we need to create a makefile to compile and

14

link all our code together.

Create another file named makefile and enter the following. Be careful to follow make's syntax by beginning the
unicon command lines with tab characters; some text editors (such as "edit") convert these to spaces on you,
which may cause the make (or nmake) program to fail. For example, if you just copy and paste these lines from
your web browser, you will not have tab characters pasted where they need to be; sorry! Notepad, or better yet a
real programmer's editor, will preserve your tab characters.

#

makefile

#

CFLAGS=-c

main.exe: main.u about.u help.u

 unicon -G -o main.exe main.u about.u help.u

about.u: about.icn

 unicon $(CFLAGS) about

help.u: help.icn

 unicon $(CFLAGS) help

main.u: main.icn

 unicon $(CFLAGS) main

Make sure you save it in the directory you made for this application

At the shell/command-line prompt enter:

...% make

Hopefully, there are not any errors at this point.

Running The Program
Note: On Windows if you are lucky you might have a similar command "nmake". If no make or nmake is
available you can enter at the shell/command prompt:

...% unicon -G main.icn about.icn help.icn

At the shell/command prompt enter:

...% main

(On Linux if the current directory is not on your PATH you can say ./main)

When successful, the main screen will be displayed. You should be able to hit the menu items and view the help
and about dialogs.

15

The About Box. Edit the file about.icn using your favorite editor. Some of the methods in the file about.icn are
shown below

#
aboutdialog is the class created by Ivib in the file about.icn
#

class aboutdialog : Dialog(AboutTxtLst)
 ...
 method init_dialog()
 end
 method on_aboutdialog(ev)
 end
 ...
end # aboutdialog

We need to fill the Text List with the About information. We could actually have done this from inside Ivib, but
just for fun let's add code to init_dialog() so the Text List is filled when the canvas is displayed. Edit about.icn
and add the following code to the init_dialog() and on_aboutdialog() methods.

 method init_dialog()

 local l
 l := [
 "This is an example application",
 "To demonstrate an About Box",
 "Also, how to show another form",
 "Plus: using Makefiles with",
 "Ivib"
]
 AboutTxtLst.set_contents(l)
 end

 method on_aboutdialog(ev)
 dispose()
 end

The Help Screen. Edit the file help.icn using your favorite editor. Some of the methods in the file help.icn are
shown below.

#
helpdialog is the class created by Ivib in the file help.icn
#

class helpdialog : Dialog(HelpTxtLst, MsgBox)
 ...
 method init_dialog()
 end
 method on_CloseBtn(ev)

16

 end
 ...
end # helpdialog class

The help screen will read in a text file and display it in the text list we created. We'll add code to the method
init_dialog to open the help file and display it. Edit the file help.icn and add the following code to the method
init_dialog():

 method init_dialog()
 local l, helpfile, fd
 helpfile := "help.txt"
 if fd := open(helpfile) then {
 MsgBox.set_label("File " || helpfile || " ")
 l := [] # create an empty list
 while put(l, read(fd)) # read lines, put in list
 close(fd)
 HelpTxtLst.set_contents(l)
 }
 else
 MsgBox.set_label("Cannot open help file: " || helpfile)
 end

We also need to add code to terminate the application when the Cancel Button is clicked. Add a call to the
dispose() function to on_CloseBtn.

 method on_CloseBtn(ev)
 dispose()
 end

You will also need to create a text file named help.txt with any information you find helpful.

The Main Screen. The main dialog will demonstrate the use of file dialog box. It will open a file dialog when
the List Button is pressed and display the selected file in a message box. First we need to link in the FileDialog
class from the Unicon class library. Add the link statement before the maindialog class declaration as follows:

import gui
$include "guih.icn"
link filedialog # this the line you add

Add the following code to the on_ListBtn method. The file dialog will be displayed when the List button is
pressed and the selected file will be displayed in the MsgBox.

 method on_ListBtn(ev)
 local s, fd
 fd := FileDialog()
 fd.set_attribs("label=Select file demonstration")
 fd.show_modal(self)
 s := fd.get_result() | fail
 if /s | s=="" | s[-1]=="\\" then {
 MsgBox.set_label("Select a file")
 return
 }
 MsgBox.set_label("File : " || s || " was selected ")
 end

17

The application is now complete. Use the makefile or Unicon command to compile and link the program and run
the application as described in the Makefile section above. Now you can go back and add labels, or resize
components as needed.

Part II: Another Simple IVIB Application

The following example demonstrates how to create a simple application that uses modeless dialogs, edit dialog
features, tab sets, and overlays. The application will contain a main screen with a table, overlay and tab set. The
main screen will call an edit dialog that will have cut, copy, paste, undo, and redo features. This example will
illustrate:

1) modeless dialogs
2) tab sets, overlays
3) capturing table events double clicks, right clicks, column clicks
4) copy, cut, paste from clipboard
5) using buttons and keeping selected regions for copy, cut, paste
6) single undo/redo instead of default compound undo/redo
7) tab jumps to components

Modeless Dialogs
We are going to create a main dialog that contains a table of games. After you select one of the games from the
table, a modeless dialog will be displayed. First, create a directory where you can save all the files created for
this application. Change into this directory, and launch Ivib. You will see a blank canvas.

Enter the canvas attributes. Either right click on the Canvas for Dialog or go to the file menu option Canvas-
>Dialog prefs.

On the Code Tab enter:
Name dialogmain

On the Methods Tab, leave the Generate main() procedure checkbox 'on' so the box is checked. We want to put
our main procedure in this file. Leave all the other checkboxes on on the Methods Tab checked also.

On the Attribs Tab, Hit Add and replace Edit me with:
Attrib Value

18

font sans,12

Hit Apply
This will set the default font to sans 12 for every component in this dialog.

On the Events Tab
Hit Add and scroll down to CLOSE_BUTTON_EVENT. Enter 'on_dialogmain' for the Event Handler. We
will use this method to capture the Windows X (close). Event at the top right of the Dialog.
Hit Apply

Hit Okay to close Dialog Prefs.

Add a Button to the canvas, by clicking on the Button Component from the Ivib Menu Bar. Move the Button to
somewhere around the left side of the canvas. Note: you can resize the canvas or the button by dragging the
right bottom corner to make it larger/smaller.
Right Click on the Button to add some attributes as follows:

On the General Tab enter:

Label Modeless

On the Other Tab
Check the Class variable checkbox

On the Name Tab
Name text_button_modeless

On the Events Tab
Hit the Add Button
Under Event
Scroll down to BUTTON_RELEASE_EVENT
Under Handler enter (it may be automatically added)
on_text_button_modeless

Hit Apply

This will create a method ‘on_text_button_modeless’ that will be invoked
by a BUTTON_RELEASE_EVENT

Hit Okay

You may need to resize the button so the text will fit.

Add an Exit Button by clicking on the Button icon on the Tool Bar.
Right Click on the Button to add some attributes as follows:

On the General Tab:
Enter:
Label Exit

19

On the Name Tab enter:
Name text_button_exit

On the Other Tab check the:
Class variable checkbox

On the Events Tab:
Hit the Add Button
Under Event: Scroll down to BUTTON_RELEASE_EVENT
Under Handler: Enter (it may be automatically added)
on_text_button_exit
Hit Apply
Hit Okay

Move the exit button to the bottom right side of the dialog (main.icn) as shown below :

 main.icn

Add a Message Box Label to the canvas by clicking on the Label component (Abc) on the Ivib menu
bar. Move the label to the bottom of the canvas and resize it to be almost the width of the canvas. Refer

20

to the screen shot of main.icn. The message label is the long rectangle at the bottom of main.icn.
Right Click on the Label to add some attributes as follows:

On the Other Tab check the:
Class variable checkbox
Click the Draw Border check box so that there is a border.
On the Name Tab enter:
Name label_msgbox
On General Tab enter:
Label : (make it blank - this label will be our message box)
Hit Okay

From the Menu, Slect File->Save As and enter main.icn
File->Save as: main.icn
Make sure you save them in the directory you made for this application.

Create an Edit Dialog by going to the Ivib menu to File->New. A blank canvas will appear.

Enter the canvas attributes. Either right click on the Canvas for Dialog or go to the file menu option
Canvas->Dialog prefs.

On the Code Tab enter:
Name dialogedit

On the Methods Tab, Uncheck the Generate main() procedure checkbox . So the checkbox is NOT
checked. We DO NOT want to put a main procedure in this file.

On the Attribs Tab, Hit Add and replace Edit me with:
Attrib Value
label Edit dialog Hit Apply

font sans,12 Hit Apply

This will add a title to the top of the canvas and change the default font to sans. You can also add
different background and foreground colors by using the attributes bg and fg.

On the Events Tab :
Hit Add and scroll down to CLOSE_BUTTON_EVENT. Enter on_dialogedit for the Event Handler
and hit Apply. We will use this method to capture the Windows X (close) Event at the top right of the
Dialog. Note Ivib may have added another event handler – please delete it. The close_button_event
handled by the on_dialogedit method should be the only ONE. Hit Okay to close Dialog Prefs.

Add an Exit Button by clicking on the Button icon on the Tool Bar.
Right Click on the Button to add some attributes as follows:

On the General Tab enter:
Label Exit

21

On the Name Tab enter:
Name text_button_exit
On the Other Tab check the:
Class variable checkbox
On the Events Tab hit the Add Button
Under Event: Scroll down to BUTTON_RELEASE_EVENT
Under Handler: Enter on_text_button_exit (it may be automatically added)
Hit Apply
Hit Okay
You may need to resize the button so the text will fit. Move the Exit button to bottom right corner as
shown below:

22

edit.icn

Add a Message Box Label to the canvas by clicking on the Label component (Abc) on the Ivib menu bar.
Move the label to the bottom of the canvas and resize it to be almost the width of the canvas. Refer to the screen
shot of edit.icn. The message label is the long rectangle at the bottom of the screen shot of edit.icn.
Right Click on the Label to add some attributes as follows:

On the Other Tab check the:
Class variable checkbox
Click the Draw Border check box so that there is a border.

On the Name Tab enter:
Name label_msgbox

On General Tab enter:
Label : (make it blank - this label will be our message box)
Hit Okay

From Ivib, go to the File menu and execute these two commands:
File->Save as: edit.icn
Make sure you save them in the directory you made for this application
Close Ivib.

3) Using an editor, open up main.icn
Caution! Because you are saving files using Ivib and your editor, make sure that you save your file
using the text editor before changing the graphics using Ivib. Also, make sure that you refresh the
buffer (get the the latest) in your text editor after you change the graphics using Ivib. If you are nervous
about writing over your changes you can make a backup copy to see how this works. Using the Gnu
Emacs editor is a good idea, since it reminds you to refresh the buffer if Ivib has changed anything.
Also, if you renamed any variables, the old names and their methods may still be there.
Note: all variables are case sensitive so CancelBtn is not the same as cancelbtn. For example, if you
forgot to uncheck ‘generate main procedure’, the main procedure will still remain. You will need to
manually remove the main procedure and uncheck it in Ivib.
Edit main.icn and add the highlighted code to the on_modeless method

 method on_text_button_modeless(ev)
 dedit := dialogedit()
 dedit.show_modeless() # show edit dialog
 dispatcher.message_loop(dialogmain())
 end

The third line 'dispatcher.message_loop(dialogmain())' makes the modal Main dialog the parent of the
modeless Edit dialog. When using modeless dialogs, at least one dialog must be modal. In this case, it
is the main dialog. You only need to add this line once. If you call a modeless dialog from dedit, the
edit dialog, you will not need this line.

Also, add dispose() to the on_text_button_exit() method to close the dialog.

23

method on_text_button_exit(ev)
 dispose()
end

Add the following code to on_dialogmain so the dialog will close for the X event

method on_dialogmain(ev)
 if \ev.param = -11 then #windows x box
 on_text_button_exit(ev)
end

Save main.icn

Edit edit.icn and add the bolded code to on_text_button_exit() to close the dialog.

method on_text_button_exit(ev)
 dispose()
end

Also add the bolded code to 'on_dialogedit'.

method on_dialogedit(ev)
 if \ev.param = -11 then #windows x box
 on_text_button_exit(ev)
end

Save edit.icn

Compile the program:

>unicon –o demo -G main.icn edit.icn

Run the program

>demo

When the main dialog comes up, you can click on the 'Modeless' button and a new edit dialog will
appear. Notice you can go back and forth from main dialog to edit dialogs. Every time you click, a new
dialog will be created.This is different from the show_modal dialogs where the focus was only given to
one dialog at a time.

We may not want our users creating too many dialog boxes. Let’s add Some code to limit them to one
only. If they click on the modeless button, and there is already a dialog open, we will set the focus on
the already opened dialog box.

In main.icn:
Add the global variable dedit at the top of main.icn (before the class declaration). This is the edit
dialog variable that will tell us if the dialog is open.

24

global dedit

Add the following bolded code to the on_text_button_modeless method and the int_dialog method.

method on_text_button_modeless(ev)
 local winedit

 if \dedit then {
 if winedit := dedit.get_win() then {
 Raise(winedit)
 dedit.set_focus(dedit.label_msgbox)
 return
 }
 }

 dedit := dialogedit()
 dedit.show_modeless() # show edit dialog
 dispatcher.message_loop(dialogmain())
end

method init_dialog()
dedit := &null
end

Save main.icn in the correct directory.
In edit.icn: Add the following bolded line to the on_text_button_exit method:

method on_text_button_exit(ev)
 dedit := &null
 dispose()
 end

This sets the global variable dedit to &null when the Dialog is closed. It can be closed by hitting the
exit button or by hitting the X button in the right top corner.

Save the file. Compile and run the program. You will get only one edit dialog no matter how many
times you hit the 'modeless' button.

Tables and Tabs Sets

Do not be confused! Tables with a capital T are GUI components that arrange elements into rows and
columns; they are not the same thing as the “table” data type.

Add a Tabset to the main.icn canvas, by clicking on the Tabset Component from the Ivib Tool bar. It
is the fourth component from the right on the top row. Move the Tabset to somewhere around the
middle of the canvas. Enlarge it so it is similar to the screen shot of main.icn
Right Click on the TabSet to add some attributes as follows:

On the Other Tab check the:

25

Class Variable checkbox

On the Name Tab enter:
Name tab_set_demo

On the General tab you see:
tab_item_1*

Click on it and an Edit box will appear :
Change it as follows to create a tab for the button:

Label: My button
Name: tab_item_btn

Hit Apply.

Now create another tab for a table by hitting Add. ‘ tab_item_2’ will be added and highlighted.
Change it as follows to create a tab for the Table
Label: My Table
Name: tab_item_table
Class variable should be checked
Hit Apply.

Now create a third tab by hitting Add. ‘tab_item_3’ will be added and highlighted.
Change it as follows to create a tab for the Table
Label My misc
Name: tab_item_misc

Hit Apply
Hit Okay and the dialog box will close. You will need to enlarge horizontally the dialog so that the
three tabs appear in order. Refer to the screen shot of main.icn at the end of this document.

Move the modeless button from the main canvas to the my button tab.

Right click on the Tabset to open the Tabset Setup dialog box. At the bottom, on the General Tab, you
see:

tab_item_btn*
tab_item_table
tab_item_misc

The * after tab_item_btn indicates it is the tab item, you are currently editing. Click on tab_item_table
so it is highlighted, then hit the which button. Now tab_item_table should have the star. Hit Okay, and
you will now see on the main dialog that the tab_item_table tab can be edited.

Add a table to this tab, by clicking on the Table Component on the Ivib Tool Bar. It is the fourth
component from the left in the bottom row. Move the table from the main canvas to the my table tab.
Resize it as shown in the screen shot of main.icn below:

26

 main.icn

We are going to add some columns in the table so right click on the table to get the Table Setup
Dialog.
On the Other Tab check the:
Class Variable checkbox

On The General Tab in Table Setup,
Hit the Add button.
Now we will add the first column to our information table. Add the following to the General Tab:
Label :Name
Width: 200
Align l
Name: table_column_1
(class variable should be checked)
Click Apply

Add another column by clicking the Add button:
Label :# of Players
Width: 125
Align l
Name: table_column_2

27

(class variable should be checked)
Click Apply

On the Selection Tab, the drop down box that says No selection, change this to Select One. Note: If
you change it to Select Many, then they can select multiple rows by Control Shift and Click (mouse) at
the same time.

On the Events Tab
Hit the Add Button
Under Event: Scroll down to MOUSE_RELEASE_EVENT
Under Handler: Enter on_table_1 (it may be automatically added)

Hit Apply
This will create a method ‘on_table_1’ that will be invoked by a MOUSE_RELEASE_EVENT
Note: Make sure that this is the only event added. Sometimes Ivib initially adds
an 'ACTION_EVENT'. Please delete all other events.

Click Okay to close the setup Dialog. You will probably need to make the Tabset and the Table larger
as shown in the screen shot of main.icn.

From The Ivib Menu, Save As main.icn.

Add the following bolded code to the init_dialog method in main.icn:

method init_dialog()
local lst
lst := [["tic tac toe","3"], ["Monopoly","8"], ["Chess","2"], ["Checkers","2"],
["Clue","6"],["DOOM","3"],["EverQuest","no limit"],["Global Thermonuclear War","no limit"]]
table_1.set_contents(lst)
dedit := &null
end

Save main.icn. Compile and run the program. You should be able to click on the tabs to display the
three different tabs. Notice the My table Tab is displayed first. We can change this by setting the
Which back to tab_item_btn in Ivib if we want the button tab to show initially.

Capturing Events, Click Counts and GoTo

We are now going to add code so that an edit dialog box will come up every time we double click on
one of the games in the table. We will add a global variable editdlg that is a table of dialogs. The keys
for the table are the positions in the table. This example will demonstrate:

1) double click
2) Finding the selected positions and the contents of the table using get_contents and

get_selections
3) Setting the position of the table by using set_selections and go_to.

28

 4) Using Events to capture the right click and the Windows X close.

Add the following global variable to main.icn. This is the table that will keep track of all the dialogs

global editdlg

Also, add two more lines to the init_dialog method. The first new line initializes/creates the table
editdlg. The second new line sets the click delay so we can distinguish double clicks from single clicks.

method init_dialog()
local lst
lst := [["tic tac toe","3"], ["Monopoly","8"], ["Chess","2"], ["Checkers","2"], ["Clue","6"],["DOOM","3"],["EverQuest","no
limit"],["Global Thermonuclear War","no limit"]]
table_1.set_contents(lst)
dedit := &null
editdlg := table()
set_double_click_delay(100000) # set click delay ford double click
end

Add the following code to the method on_table_1:

method on_table_1(ev)
local posn,poslst,msg,gamelst,cc
poslst := []
posn := 0
game := ""
gamelst := []
cc := 0

if \ev & \ev.source & \ev.type & \ev.param then
 write("sc ",image(ev.source)," type ",image(ev.type)," param ",image(ev.param))
else
 return

if \ev.param = -6 then { #right click
 posn := table_1.get_table_content().get_line_under_pointer() | 0
 if posn < 1 then return

 table_1.set_selections([posn]) # add to selected list, highlight it
 table_1.goto_pos(posn)
 table_1.set_cursor(posn)
 label_msgbox.set_label("right click demo at pos "||posn)
 self.display()
 return
 }

returns list of selected items in this case only one because 'select one' is set for the table
 poslst := table_1.get_selections() | []
 if *poslst > 0 then
 posn := poslst[1] # the selected position
 else
 return
returns a list of lists with 2 items game and number players

29

 gamelst := table_1.get_contents()

get the selected name of the game from the table, the first item in the list
 game := gamelst[posn][1]

 cc := get_click_count()
 if cc > 1 then {
 game := game || " double click "
create a global table editdlg to keep track of all the open dialogs
 if not member (editdlg, posn) then {
 (editdlg[posn] := dialogedit(posn,game))
 editdlg[posn].show_modeless()
 }
 else {
 Raise(editdlg[posn].get_win())
 editdlg[posn].set_focus(editdlg[posn].label_msgbox)
 }
 return

 } # end cc > 1

 if posn >= *gamelst then
 posn := 1
 else
 posn +:= 1

 table_1.set_selections([posn]) # add to selected list, highlight it
 table_1.goto_pos(posn)
 table_1.set_cursor(posn)
 label_msgbox.set_label("single click - going to next selection ")
 label_msgbox.display()
 end

Save main.icn.

First, this code will write the ev.param, ev.type and ev.code to determine what the ev.param is for a
right click. It is -6, so if there is a right click, it is displayed in MsgBox and the selected position is
highlighted and returns out of the method. Second, this code gets the selected item from a list of
selected items by calling get_selections. Since we have set the table in Ivib to ‘select one’, only one
item may be selected. So the list is either a one item list or empty if nothing has been selected. We can
get the table contents by calling get_contents. For tables, it will return a list of lists where each list
(inside the big list) represents a row of size equal to the number of columns. In this example, we only
have two columns; games and players. If an item is double clicked, then the edit dialog for the selected
game and position is displayed.

This example also demonstrates the use of the goto_pos, set_cursor and set_selections methods. If an
item is single clicked, then the selection is moved to the next position unless it is the last position. If it
is the last position, then it is moved to the first position. This is a pretty stupid thing to do, but it does
demonstrate these features.

30

We are also passing the game name and its position to the edit dialog. So two variables will need to be
added to the class definition for dialogedit in edit.icn as follows:

class dialogedit : Dialog(posn, msg, label_msgbox, text_button_exit)

Note: Add them as the first two – the order is important. Also, note that Ivib will not alter them, but it
will add new components in front of them. This means that you must move them back to the beginning
if you add new components using Ivib.

Since we now have more multiple dialogs, we need to make sure they are set to &null when the edit
dialog terminates. Therefore, the following bolded code will also need to be added to edit.icn.

 method init_dialog()
 if \msg & \posn then
 label_msgbox.set_label(posn||" "||msg)
 end

method on_text_button_exit(ev)
 delete(editdlg,posn)
 dedit := &null
 dispose()
end

Save edit.icn. Compile and run the program. If you right click on any of the rows in the table, 'right click demo
at position x' will be displayed in the message label. If you double click on any of the games, you will see either
a new dialog or an existing dialog will be raised to the front. The new dialog will display the chosen game and
it's position. If you single click, the cursor position goes to the next game or to the beginning if you are on the
last game. This program also writes to standard output the values of ev.source, ev.type, and ev.param every time
the mouse is released on the table.

Overlays, and Hour Glasses

Open up edit.icn using Ivib. Add an Overlay to the edit.icn canvas, by clicking on the Overlay Component from
the Ivib Tool Bar. It is the second component from the right in the top row. Move the Overlay to somewhere
around the middle of the canvas. Enlarge it so its width and length are about twice the default size (see the
screen shot of edit.icn). The overlay works very much like the Tabset component. It allows the program to hide
components.

Right Click on the Overlay to add some attributes as follows:

On the Other Tab check the:
Class Variable checkbox

On the Name Tab enter:
Name overlay_set
On The General Tab you see:
overlay_item_1*

31

Click on it and an Edit box will appear. Change the name as follows: This will be the initial overlay

Name: overlay_item_blank

Hit Apply.
Create a second overlay by hitting Add and overlay_item_2 will be added and highlighted.
Change the name as follows:

Name: overlay_item_edit
Hit Apply.

Click on overlay_item_edit so it is highlighted, then hit the which button. Now overlay_item_edit should
have the star. Hit Okay to close the setup dialog

Add an EditableText List Box to the overlay by clicking the EditableText List component from the Ivib Menu
Bar. It is the first one from the left in the second row. Move it on top of the Overlay and resize it (see the screen
shot of edit.icn). Now, right click on it to get the dialog attributes

On the Other Tab check the:
Class Variable checkbox

On the Name Tab enter:
Name editable_text_list_instruct

Hit Okay.

Add another EditableText List Box to the overlay by clicking the EditableText List component from the Ivib
Menu Bar. It is the first one from the left in the second row. Move it on top of the Overlay and move it directly
under the editable_text_list_instruct editabletextlist.. (see the screen shot of edit.icn) Now, right click on it to get
the dialog attributes

On the Other Tab check the:
Class Variable checkbox

On the Name Tab enter:
Name editable_text_list_game

Hit Okay.

Set the overlay back to the blank overlay by right clicking on the Overlay to change the which. At the bottom in
the OverlaySet Setup panel, Click on overlay_item_blank so it is highlighted, then hit the which button. Now
overlay_item_blank should have the star. Hit Okay.

Copy, Cut, Paste, Undo and Redo

Add 6 Buttons. Move the buttons to the left of the overlay set (see screen shot of edit.icn).
Right Click on each the Buttons to add some attributes as follows:
On the Other Tab check:
Class Variable

32

On the Name Tab enter:
 Name text_button_cut

On the General Tab enter:
Label Cut

On the Events Tab add:
Event Handler
BUTTON_RELEASE_EVENT on_text_button_cut
Make SURE this is the ONLY event. Delete any other events that may have been added by Ivib.

Hit Apply
Hit Okay.

Do the same for the remaining buttons as follows:
Name text_button_copy
Label Copy
Name text_button_paste
Label Paste
Name text_button_undo
Label Undo
Name text_button_redo
Label Redo
Name text_button_ok
Label OK

We are going to create code to add and verify the password. First Add a label to the canvas by clicking on the
Label component (Abc) on the Ivib menu bar. Move the label below the buttons (see screen shot of edit.icn).
Right Click on the Label to add some attributes as follows:

On the Name Tab enter:
Name: label_pw
On General Setup:
Label : Password

On the Other Tab check the:
Class Variable checkbox

Hit Okay.

Add a textfield to the canvas by clicking on the textField component on the Ivib tool bar. This is the
component third from the top left. Move the textfield below the buttons and just to the right of the label_pw (see
screen shot of edit.icn). You may need to resize it. Right Click on the textfield to add some attributes as follows:
On the Other Tab check:
Class Variable

On the Name Tab enter:
Name text_field_pw

Hit Okay.

33

You will probably want to resize it. Refer to the screen shot of edit.icn. Save the Dialog in Ivib as edit.icn.

Now edit the source file edit.icn.. Remember to refresh the Ivib changes.

Notice that in the class declaration, the components: text_button_copy, text_button_cut, text_button_paste,
text_button_redo, text_button_undo, text_button_ok, editable_text_list_instruct, editable_text_list_game,
overlay_set, text_field_pw have been added before posn and msg. You will need to move them to the end
because we are passing posn and msg from the main dialog and they must be the first and second variable.

The class variables should look something like this when you are finished:

class dialogedit : Dialog(posn, msg , text_button_copy, text_button_cut, text_button_paste, text_button_redo,
text_button_undo, text_button_ok, editable_text_list_instruct, editable_text_list_game, overlay_set,
text_field_pw , text_button_exit, label_msgbox, overlay_item_blank, overlay_item_edit, label_pw)

We are going to let the user enter the game instructions only if they type in the password and hit the OK button.
The overlay is initially set to overlay_item_blank because we set the which button in Ivib. However, when the
correct password is typed, then the overlay will switch over to overlay_item_edit so the instructions can be
entered. If the wrong password is typed and the OK button is hit, then we will make the user wait. This
demonstrates the use of the hour glass mouse pointer. (Although, usually we use the hourglass when the program
is processing). Add the following bolded code to edit.icn as follows:

method init_dialog()
if \msg & \posn then {
 label_msgbox.set_label(posn||" "||msg)
 editable_text_list_game.set_contents([msg])
}
text_field_pw.set_displaychar("*") # replace characters with * in password
end

method on_button_ok(ev)
local pw, t2, wait
pw := ""
label_msgbox.set_label("")
label_msgbox.display()

pw := text_field_pw.get_contents()
if pw == "joshua" then {
 overlay_set.set_which_one(overlay_item_edit)
 label_msgbox.set_label("Enter Game Instructions ")
 label_msgbox.display()

}
else {
 t2 := &time
 WAttrib(win,"pointer=" || ("wait"|"watch")) # change mouse pointer to hourglass
 label_msgbox.set_label("Incorrect Password Please wait ")
 while &time - t2 < 5000 do
 wait := 1
 WAttrib(win,"pointer=arrow") # change mouse pointer to arrow
 label_msgbox.set_label("OK try again ")
 label_msgbox.display()

34

 }
end

Save edit.icn. Compile and run the program. Double click on a game to get to the edit screen. You will see that if
you type in the correct password ('joshua'), and hit Ok, the blank edit box where you can type in instructions will
be visible. Hard coding passwords is not a good idea, but this example demonstrates the use of overlays and
replacing the characters with stars. If you type in the wrong password, you will have to wait.

Open up edit.icn using your editor.
Add the following code to the init_dialog method:

 method init_dialog()
 text_button_copy.clear_accepts_focus() # keeps selected region
 text_button_cut.clear_accepts_focus()

 end

NOTE: This code is necessary to allow the selected region in the editable text list to be selected. Otherwise, the
selected region will be lost when the event of hitting the buttons
is invoked.

Now add the following code for copy, cut, paste, redo and undo.

method on_button_cut(ev)
editable_text_list_instruct.handle_cut()
end
method on_button_copy(ev)
editable_text_list_instruct.handle_copy()
end
method on_button_paste(ev)
editable_text_list_instruct.handle_paste()
end
method on_button_undo(ev)
editable_text_list_instruct.handle_undo()
end
method on_button_redo(ev)
editable_text_list_instruct.handle_redo()
end

Save edit.icn and compile and run the program.

unicon –o demo -G main edit myeditabletextlist

You should be able to copy/cut/paste/undo/redo in the editable_text_list_instruct box. However, you may
want to copy text from other sources. We need to be able to cut/copy and paste using the Windows clipboard. To
do this we will need to create a subclass for our EditableTextList. We will create a new file
myeditabletextlist.icn that will inherit all the methods of editabletext list except for:

handle_copy
handle_paste

35

handle_cut

Create a new file myeditabletextlist.icn and copy in the following code:

#
myeditabletextlist subclass of EditableTextList to
allow clipboard operation in Cut/Copy?paste
#
import gui
link graphics
import undo
$include "guih.icn"

class myeditabletextlist : EditableTextList()

 method handle_cut(e)
 start_handle(e)
 if has_region() then {
 copy_to_clipboard(get_region())
 delete_region(e)
 }
 end_handle(e)
 end

 method handle_copy(e)
 start_handle(e)
 if has_region() then {
 copy_to_clipboard(get_region())
 }
 end_handle(e)
 end

#___
 method copy_to_clipboard(l)
 local large_str, i

 if /l | *l = 0 then fail
 large_str := l[1]

 every i := 2 to *l do
 large_str ||:= l[i]

 WAttrib("selection=" || large_str)

 return large_str

 end
#__
 method get_list_from_clipboard()
 local large_str, l, str,start,blank1,tab1,p
 blank1 := ' '

36

 tab1 := '\t'
 start := 1
 end1 := 1
 str := ""
 p := 1
 large_str := ""
 large_str := WAttrib("selection")
 if /large_str then fail
 l := []

 while end1 := upto("\n",large_str,start,0) do {
 str := large_str[start:end1]
 if p := upto(&ascii--blank1,str) then
 str := str[p:0]
 put(l, str)
 start := end1 + 1
 }
 str := large_str[start:0]
 if p := upto(&ascii--blank1--tab1,str) then
 str := str[p:0]
 put(l,str)

 return l
 end

#___
insert_cr is a global variable to tell paste
to add a line feed after each line
 method get_pasteable_clipboard(insert_cr)
 local x, t, s, c
 x := []
 t := ""

 x := get_list_from_clipboard() | fail

 every j := 1 to *x do t := t || trim(string(x[j])) || " "

 # Apply the filter to the string to paste
 s := ""
 every c := !t do {
 if member(printable, c) then
 s ||:= c
 }
 if *s = 0 then
 fail
 return s
 end

#__
 method handle_paste(e,insert_cr)
 local s, ce, ed

 start_handle(e)

37

 if s := get_pasteable_clipboard(insert_cr) then {
 ce := CompoundEdit()

 if has_region() then {
 ed := EditableTextListDeleteRegionEdit(self)
 ed.redo()
 ce.add_edit(ed)
 }
 ed := EditableTextListPasteEdit(self, s)
 ed.redo()
 ce.add_edit(ed)

 undo_manager.add_edit(ce)
 changed := 1
 }
 end_handle(e)
 end
#_______________________________________
 end # myeditabletextlist class

Now open up edit.icn using Ivib. Right click on the Overlay set and switch to overlay_item_edit. Right click on
the top edit box text_list_instruct to get the dialog box.

On the Name Tab,
Change the Class to myeditabletextList.
(Make sure this is all in lower case to match the class in myeditabletextlist.icn)

Hit Okay

and save edit.icn

This will allow all cut/copy/pastes into editable_text_list_instruct to use our subclass to pick up the windows
clipboard.

unicon –o demo -G main edit myeditabletextlist

Now, when you run demo you should be able to use the instructions edit box (editable_text_list_instruct) to cut,
copy, paste from other documents.

Tab Jumps, Compound Undo/Redos and Table column events

There are a few more things we will add top the demonstration
1) tab jumps
2) compound undos/redos
3) using events on table columns

Tab jumps.
Open up edit.icn using your editor. Be sure to refresh to the changes from Ivib from above.
Add the following code to the init_dialog method:

 method init_dialog()

38

 editable_text_list_game.clear_accepts_focus() # allows tab jump or disables tab insert

 end

NOTE: This code will not allow the tab to jump to the editable_text_list_game box. It will disable any type of
input to it. After completing this Tutorial, you may want to make editable_text_list_game a 'myeditabletextlist'
component so you can use the tabs, copy,cut, paste, undo, redo from the buttons. This will require that events
are used to determine which edit box (editable_text_list_game or editable_text_list_list) to apply the function.

You may want to use the tab key to jump from one component to another. In our demo, the tab key just inserts a
tab into the first text box in edit.icn. Suppose, we would like the tab key to jump to another component. To do
this, you need to add the following methods to the subclass myeditabletextlist.icn:

 method keeps(e)
 # This component keeps all events.
 return e ~=== "\t"
end
#___
method handle_event(e)

 if (e === "\t") then
 return

 (\self.vsb).handle_event(e)
 (\self.hsb).handle_event(e)
 if e === (&lpress | &rpress | &mpress) then
 handle_press(e)
 else if e === (&ldrag | &rdrag | &mdrag) then
 handle_drag(e)
 else if e === (&lrelease | &rrelease | &mrelease) then
 handle_release(e)
 else if \self.has_focus then {
 case e of {
 Key_Home : handle_key_home(e)
 Key_End : handle_key_end(e)
 Key_PgUp : handle_key_page_up(e)
 Key_PgDn : handle_key_page_down(e)
 Key_Up : handle_key_up(e)
 Key_Down : handle_key_down(e)
 Key_Left : handle_key_left(e)
 Key_Right : handle_key_right(e)
 "\b" : handle_delete_left(e)
 "\r" | "\l": handle_return(e)
 "\^k" : handle_delete_line(e)
 "\^a" : handle_select_all(e)
 "\^e" : handle_end_of_line(e)
 "\d" | "\^d" : handle_delete_right(e)
 "\^x" : handle_cut(e)
 "\^c" : handle_copy(e)
 "\^v" : handle_paste(e)
 "\^z" : handle_undo(e)

39

 "\^y" : handle_redo(e)
 default : handle_default(e)
 }
 }
 end

Compile and run the program. Notice that the tab key makes the cursor jump from component to component. If
you want to order the tab jumps, go into Ivib, hit control-shift and simultaneously select the text_button_paste,
text_button_undo, text_button_redo, text_field_pw, text_button_ok, text_button_exit in that order respectively.
While still holding the control-shift, go to the Selection Item on the menu and select 'Reorder'. Now you can tab
jump from top to bottom.

Compound Undos and Redos

If you use undo and redo in our demo dialog, you will notice that the Undo undoes ‘compound edits’ instead of
single edits. If you would like to undo single edits, you will need to create a subclass of the undomanager. Create
a file myundomanager.icn and copy the following code in to it.

import undo
UndoManager is a CompoundEdit. Until it is closed it allows undos and redos
within its list of edits, moving a pointer into the list appropriately.
#
class myundomanager:UndoManager(limit, index)
 method add_edit(other)
 if \closed then
 return self.CompoundEdit.add_edit(other)
 while *l >= index do
 pull(l)
 put(l, other)
 index +:= 1

 while (*l > limit) & (index > 1) do {
 index -:= 1
 pop(l)
 }
 end
end # class

Now, edit myeditabletextlist.icn, and add initially code to use MyUndoManager.
Add this code right before the class end statement:

 initially(a[])
 wordlist := []
 noedit := 0
 tab_move := &null
 self.LineBasedScrollArea.initially()
 self.set_accepts_focus()
 undo_manager := myundomanager() # use local undomanager
 printable := cset(&cset[33:0]) ++ '\t\n'
 tab_width := 8
 set_wrap_mode("off")
 self.cursor_x := self.cursor_y := 1

40

 set_fields(a) # insert initially before class end statement
 # NO END STATEMENT FOR INITIALLY

 end # class myeditabletextlist.icn

Compile and link
unicon –o demo -G main edit myeditabletextlist myundomanager
Run the demo again to test the single undos/redos.

Tables Column Events

So far we have just been using the table on the main screen to select The games (rows). We may also want to use
the ‘Name’ column or The #Players column. In this example, we will sort the columns when a column is
selected. The columns are actually components (subclasses of TextButton), and can be reached via the
get_column(n) method of Table, where n is the index of the column.

Edit main.icn. Add a class variable table_1_col_select to the class declaration. We will use this variable to tell
us if the column has been clicked.

class dialogmain : Dialog(table_1_col_select,tab_item_btn,

Add the following bolded lines to the end of init_dialog:

method init_dialog()
.......
......

table_1_col_select := 0 # class variable initialize
on_table_1() # Listen for events
end

Next we need to add code to on_table_1 which is triggered by a MOUSE_RELEASE_EVENT to listen
for a column event.

Add the following bolded code to the beginning of the method on_table_1():

method on_table_1(ev)
 local posn,poslst,msg,gamelst,cc
poslst := []
posn := 0
game := ""
gamelst := []
cc := 0
table_1.get_column(1).connect(self, "on_table_column_1", MOUSE_RELEASE_EVENT)
 if table_1_col_select = 1 then {
 table_1_col_select := 0
 return
 }

 table_1.get_column(2).connect(self, "on_table_column_2", MOUSE_RELEASE_EVENT)
 if table_1_col_select = 1 then {

41

 table_1_col_select := 0
 return
 }

if \ev & \ev.source & \ev.type & \ev.param then

.......
........

end

Add the following to methods to handle the events. These methods Sort the selected columns:

#____________________________________
 method on_table_column_1()
 local lst,k,slst ,T
 lst := []
 slst := []
 table_1_col_select := 1
 lst := table_1.get_contents()
 T := table()

 every k := 1 to *lst do
 insert(T,lst[k][1],lst[k][2])

 lst := []
 lst := sort(T,1)

 table_1.set_contents(lst) # sort by table key

 end

#____________________________________
 method on_table_column_2()
 local lst,k,slst ,T
 lst := []
 table_1_col_select := 1
 lst := table_1.get_contents()
 T := table()
 every k := 1 to *lst do
 insert(T,lst[k][1],lst[k][2])

 lst := []
 lst := sort(T,2) # sort by table elements
 table_1.set_contents(lst)
 end
#___

Compile and run. When you click on the table columns, they should sort by Name or number of players. This
demonstrates the use of table columns.This concludes this Tutorial.

42

Conclusions and Future Work

Using IVIB is easy, but really becoming proficient with it requires some familiarization and a certain comfort
level with object-oriented programming. We believe this GUI toolkit is easier to learn than most competing
tools. We plan to merge traditional IDE code editing, compiling, and executing capabilities into Ivib in a future
release.

It is possible to use Ivib with regular procedural code, and it would be easy to extend Ivib to call a procedure for
each event. This would allow Icon programmers to benefit from the new GUI toolkit. We would be happy to see
this added to Ivib.

Acknowledgements

Robert Parlett inspired and astonished us by writing a GUI library better than we could have hoped for, entirely
on his own, as a volunteer effort. His work was done in Idol and porting it to run under Unicon allowed us to
identify some bugs in the new compiler. We hope our work adds value to Robert’s accomplishment. Phillip
Thomas provided corrections to this manuscript.

.

References

Ralph Griswold, Clinton Jeffery, and Gregg Townsend, "Graphics Programming in Icon", Peer-to-Peer
Communications, 1998.

C. Jeffery, S. Mohamed, R. Pereda, R. Parlett, "Programming with Unicon", unicon.sourceforge.net/ub/ub.pdf,
2001-2005.

43

http://unicon.sourceforge.net/ub/ub.pdf

