
Unicon 3D Graphics
User's Guide and Reference Manual

Naomi Martinez and Clinton Jeffery
Unicon Technical Report #9a

July 23, 2003

Abstract

Version 11 of the Unicon language includes 3D graphics facilities. This document
describes the design of the Unicon 3D graphics facilities, and provides several examples
detailing their use.

New Mexico State University
Las Cruces, NM 88003

This work was sponsored by the National Library of Medicine, the Alliance for Minority
Participation, and by NSF grants EIA-0220590 and EIA-9810732.

1. Introduction

Most application programming interfaces for writing 3D computer graphics
applications are complicated and difficult to master. Toolkits such as OpenGL
[OpenGL00] and Open Inventor are powerful, but severalweeksor even monthsare
neededto gain proficiency. Even after gaining proficiency, many lines of code are
required to implement most features. There is much that can be simplified.

Unicon [Jeffery03]is a supersetof the Icon programminglanguage[Griswold96] that
offers many featuresthat minimize the time and effort spentprogramming.Programs
written in Unicon require from two to ten times fewer lines of code than programs written
in languagessuchasC, C++, or Java.This reportdescribesa setof simple,easyto use
3D graphics facilities for Unicon.

Icon andUnicon alreadyprovide facilities that simplify the processof programming
2D graphicsapplications[Griswold98]. Unicon’s 3D graphicsfacilities are basedupon
andintegratedwith the2D facilities. Unicon’s3D facilities arebuilt on top of oneof the
leading3D graphicslibraries,OpenGL. OpenGLis morewidely portableandavailable
than most similar toolkits.

This paperdiscussesthe designand demonstratesthe useof Unicon’s 3D graphics
facilities. Sectiontwo containsthedesignof theUnicon3D graphicsfacilities. Examples
andsamplecodecanbefoundin sectionthree.Referencesfor functionsandattributesare
found in section four. The implementationof the Unicon 3D graphics facilities is
discussed in [JeffMart03].

2. Design

The Unicon 3D graphicsfacilities aim to providethe basicelementsof 3D computer
graphics in a simplified fashion. The basic functionality includes primitives,
transformations,lighting, and texturing. With thesefeatures,the Unicon 3D graphics
facilities should provide a good basis to construct an OpenGL scene using Unicon.

The featuresof the Unicon3D graphicsfacilities differ from the featuresof OpenGL
in severalways. The Unicon 3D graphicsfacilities introduceseveralnot available in
OpenGL.Thesefeaturesincludethe direct useof imagefiles astexturesandthe useof
the foregroundattributeto manipulatematerialproperties.Also thereareseveralfeatures
of OpenGL that are not availablein the Unicon 3D graphicsfacilities. Thesefeature
includeblending,fog, antialiasing,displaylists, selection,andfeedback.If thereis need
to, future work might include implementing these features.

2.1 Application Programming Interface (API) Reduction

OpenGL contains over 250 functions that can be called to render 3D graphics
applications.Also neededare many window system calls that are not provided by
OpenGL,to openand closewindows and handleinput from the user.The Unicon 3D
graphicfacilities reducethe numberof functionsthat a Unicon usermusttypically learn
to use.TheUnicon3D graphicsfacilities containsixteennewfunctionsandsix functions
that have been extended from the 2D graphics facilities.

2

Some of the designed API reduction was obtained by trivial application of Unicon
language features. The ability to store different data types in the same variable and the
fact that Unicon handles functions with a variable number of arguments and varying
types reduced the number of functions needed in the API. For example there are six
different functions one can call to clear a window in OpenGL. Unicon users only need
one.

Other methods of reduction include providing OpenGL features with default
parameters and eliminating unnecessary function calls. For example to draw a polygon in
OpenGL, the user makes a call to glBegin(). For each vertex of the polygon, the user must
call glVertex(). Finally to end the drawing of the polygon, the user makes a call to
glEnd(). In the Unicon graphics facilities, the user makes a function call to
DrawPolygon() with the window to be drawn on and the x, y, and z coordinates of each
vertex of the polygon. By using only one function call, the number of lines of code is
reduced.

2.2 Opening Windows for 3D Graphics

The first step in 3D graphics programming is opening windows to render 3D graphics,
as in the line:

W := open(“win”, “gl”)

To open a 3D graphics window, call the built in function open(), passing in the title
of the window to be opened and mode “gl”. In the above example, “win” is the title of the
window to be opened. The parameter “gl” indicates that a window for rendering 3D
graphics should be opened. As in the 2D facilities, if a window is assigned to the
keyword variable &window, it is a default window for subsequent 3D function calls.

2.3 The Coordinate System

Features such as lighting, perspective, texturing, and shading, give a scene the illusion
of being three-dimensional. In order to control such features, a Unicon programmer
makes use of context attributes. By assigning new values to various attributes the
programmer can effectively change many aspects of the scene. Attributes to control the
coordinate system, field of view, lighting and textures are included in the Unicon 3D
graphics facilities.

Some of the most basic context attributes concern the coordinate system. In 3D
graphics one can think of drawing the scene in a three-dimensional coordinate system. A
set of three numbers, an x-coordinate, a y-coordinate, and a z-coordinate, determine
where to place an object. The objects that are visible on the screen depend on several
things, the eye position, the eye direction, and the orientation of the scene. If these things
are not taken into account, the scene drawn and the scene desired by the user might be
two very different things.

To help think about these attributes, imagine a person walking around a 3D coordinate
system. What this person sees becomes the scene viewed on the screen. The eye position
specifies where this person is standing. For instance if this person is standing at the
origin, (0, 0, 0), then things close to the origin appear larger and seem closer than objects

3

further from the origin. The eye direction supplies the direction in which the person is
looking. Suppose the person is looking toward the negative z-axis. Then only the objects
situated on the negative z-axis are viewed in the scene. Anything on the positive z-axis is
behind the viewer. Finally, the up direction can be described by what direction is up for
the person.

In the Unicon 3D graphics facilities, the eye position is given by the attribute eyepos.
By default this is set to be at the origin or (0, 0, 0). The eye direction is given by the
attribute eyedir. By default this is set to be looking at the negative z-axis. The up
direction can be specified by the attribute eyeup and by default is (0, 1, 0). The attribute
eye allows the user to specify eyepos, eyedir, and eyeup with a single value. After
change any of these attributes, the scene will redraw itself with the new eye
specifications.

2.4 Drawing Primitives

In the Unicon 2D graphics facilities, a user can draw 2D points, lines, polygons, and
circles. Primitives analogous to these and more are available in Unicon’s 3D graphics
facilities. The Unicon 3D primitives are a cube, a point, a line, a line segment, a sphere, a
torus, a cylinder, a disk, a partial disk, a filled polygon, and an outline of a polygon.
These are described in Table 1 below. All functions specified, can take as their first
parameter the window to be drawn on. When a window is not specified the primitives
will be drawn on the default window, &window.

In the Unicon 3D graphics facilities, one can draw 2D, 3D or 4D objects within the
same scene. With the use of the context attribute, dim, the user can switch between the
different dimensions of an object. A user can draw 2D, 3D, or 4D, objects by assigning
dim the values of 2, 3, or 4. It is worth noting that a 2D object drawn in a 3D scene does
not use Unicon’s 2D graphics facilities for its implementation. Instead, the dim attribute
defines how many components a vertex of a primitive will have. The value of dim affects
the primitives drawn in several ways. For functions such as DrawPolygon() which take
the coordinates of each vertex as parameters, the value of dim specifies the number of
parameters each vertex will have. For primitives that take x, y, and z coordinates,
specifying only x and y coordinate is not sufficient. For this reason, “dim = 2” disallows
the use of these primitives. These functions are DrawSphere(), DrawTorus(),
DrawCube(), and DrawCylinder(). By default the value of dim is three. An example
of drawing primitive can be found in section 3.2.

Several functions from the 2D graphics facilities have been extended for the 3D
graphics facilities. By doing this, learning to use the Unicon 3D graphics facilities may be
easier for users of the Unicon 2D graphics facilities. These functions are DrawPoint(),
DrawLine(), DrawSegment(), DrawPolygon(), and FillPolygon(), which draw a
point, a line, a line segment, an outline polygon or a filled polygon, respectively.
Through the use of the already present 2D functions, the number of functions added for
the 3D graphics facilities are kept to a minimum.

4

Table 1 – types of primitives

Primitive Function Parameters Picture
Cube DrawCube() the x, y, and z coordinates of

the lower left front corner, and
the length of the sides.

Cylinder DrawCylinder() the x, y, and z coordinates of
the center, the height, the radius
of the top, the radius of the
bottom. If one radius is smaller
than the other a cone is formed.

Disk DrawDisk() the x, y, and z coordinates of
center, the radius of the inner
circle, and the radius of the
outer circle. By specifying an
additional two angle values a
partial disk is obtained.

Filled
Polygon

FillPolygon() the x, y, and z coordinates of
each vertex of the polygon.

Line DrawLine() the x, y, and z coordinates of
each vertex of the line.

Polygon DrawPolygon() the x, y, and z coordinates of
each vertex of the polygon.

Point DrawPoint() the x, y, and z coordinates of
each individual point.

Segment DrawSegment() the x, y, and z coordinates of
each vertex of the line
segments.

Sphere DrawSphere() the x, y, and z coordinates of
center and the radius of the
sphere.

Torus DrawTorus() the x, y, and z coordinates of
the center, an inner radius and
an outer radius.

5

2.5 Transformations
Matrix multiplications are used to calculate transformations, such as rotations,

translations, and scaling, on objects and the field of view. In order for the user to keep
track of matrices and matrix multiplications, functions to perform several operations are
included in Unicon’s 3D graphics facilities.
 In many 3D graphics applications, several transformations are performed on one
object and several other transformations are performed on another object. For this reason,
it is desirable to use different matrices to perform these calculations. OpenGL keeps track
of the current matrix with a stack of matrices, where the top of the stack is the current
matrix. The Unicon 3D graphics facilities make use of OpenGL’s implementation of the
matrix stack to implement transformations.

Several functions are provided to the Unicon user to manipulate the matrix stack.
The function PushMatrix() pushes a copy of the current matrix onto the stack. By doing
this the user can compose several different transformations. The function
IdentityMatrix() changes the current matrix to the identity matrix. Finally, to discard the
top matrix and to return to the previous matrix, the function PopMatrix()will pop the top
matrix off the matrix stack.

As in OpenGL, there are two different matrix stacks, projection and modelview,
in the Unicon 3D graphics facilities. The projection matrix stack contains matrices that
perform calculations on the field of view. These calculations are based on the current eye
attributes. If these eye attributes are changed, then previous manipulations of the
projection matrix stack are no longer valid. The maximum depth of the projection matrix
stack is two. Trying to push more than two matrices onto the projection matrix stack will
generate a runtime error. The modelview matrix stack contains matrices to perform
calculations on objects within the scene. Transformations formed using the matrix stack
only effect the objects that a programmer desires. The maximum depth of this stack is
thirty-two. So, pushing more than thirty two matrixes onto the modelview matrix stack
will generate an error. Furthermore, only one matrix stack can be manipulated at any
given time. The function MatrixMode() switches between the two matrix stacks.

2.6 Lighting and Materials
The use of lighting is an important step in making a 3D graphics scene appear to

be 3D. Adding lighting to a scene can be fairly complicated. A light source can emit
different types of light: ambient light, diffuse light, and specular light. Ambient light is
light that has been scattered so much that is difficult to determine the source.
Backlighting in a room is an example of ambient light. Diffuse light comes from one
direction. This type of light mostly defines what color the object appears to be. Finally,
specular light not only comes from one direction, but also tends to bounce off the objects
in the scene.

Lighting has been implemented in the Unicon graphics facilities through the use
of context attributes. The use of context attributes reduces the number of functions added
to the Unicon 3D graphics facilities. For a 3D scene implemented in Unicon, there are
eight lights available. Using the attributes light0 through light7 one can control the eight
lights. Each light is on or off and has the properties diffuse, ambient, specular, and
position.

A scene not only has several lighting properties, but the objects in scene may
have several material properties. The material properties are ambient, diffuse, and

6

specular,which aresimilar to the light properties,emission,andshininess.If an object
hasan emissionproperty,it emits light of a specificcolor. Using combinationsof these
material properties one can give an object the illusion of being made of plastic or metal.

In the Unicon 2D graphicsfacilities, usersusea rich namingschemeto specify
thecurrentforegroundcolor usingthe attributefg. Colorscanbespecifiedusinga string
name,a hexadecimalnumber,or red, green,and blue componentseachbetween0 and
65535. The 3D graphicsfacilities haveextendedthis idea to the lighting and material
properties.For a materialproperty,the programmercanspecifythe materialpropertyby
statingthe typeof thematerialpropertyandthenthecolor that thepropertyshouldhave.
Similarly the valuesfor eachof the lights follow the samepattern. Also, not only cana
programmerspecify a color in the sameways as the 2D graphicsfacilities, but also a
color canbegivenby providingthe red,green,andblue intensitiesbetween0.0 and1.0.
Examples of lighting and material properties can be found in section 3.3.

By extendingthe featuresof the 2D graphicsfacilities, adding and changing
propertiesof lights and material has been simplified. Furthermore,the use of the
foregroundattributegreatlyreducesthenumberof linesof codeneededfor a scene.This
designalongwith severaldefaults,a userof the Unicon 3D graphicsfacilities canhave
lighting in a 3D graphics application without much effort.

2.7 Textures
Anotherimportantareaof three-dimensioncomputergraphicsis textures.Adding

texturesto a scenecangive a scenea realisticfeel. In orderto implementtexturesin the
Unicon3D graphicsfacilities, severalaspectsof texturinghaveto be takeninto account.
A textureimagecanbe viewedasa rectangularimagethat is “glued” onto objectsin a
scene.Theappearancesof the texturedobjectsin thescenedependon severalkey pieces
of information suppliedby the programmer.Theseinclude the textureimageand what
parts of the texture image is mapped to what parts of an object.

Sincenot all scenesrequiretheuseof textures,theattributetexmode is included
in the Unicon 3D graphicsfacilities. By default,texturesareturnedoff. In orderto turn
on texturing in a scene use the following line of code

 WAttrib(W, “texmode=on”)
Once texturesare turned on and a texture image is given, the texture image will be
appliedto subsequentobjectsin the scene.By usingthe following line of code,textures
will be disabled for all successive objects.
 WAttrib(W, “texmode=off”)

Textureimagesin OpenGLprogramsareimagesthat havebeenencodedinto an
array.Soif a programmerwantsto usea .gif imagefile, thefile mustbeconvertedinto a
format acceptedby OpenGL.Often times this is a cumbersomeprocessto obtain the
desiredresult. For this reason,theUnicon3D graphicsfacilities provideseveraldifferent
formatsto specifya textureimage.A textureimagecanbe anotherUnicon window, an
imagefile, or a string. If the textureimageis a string it mustbe encodedin oneof two
language standard formats. Either it is in the format

“width,pallet,data” or “ width,#,data”
wherepallet is one of the palletsdescribedin the 2D graphicsfacilities and data is a
hexadecimalrepresentationof an image.In the first casethe pallet will determinewhat
colors appear in the texture image. In the secondcase, the foreground color and
backgroundcolor will be used. The ability to useanotherUnicon window asa texture

7

provides the programmer with greater flexibility for texture images. For OpenGL, a
texture image must be known before the start of the program. The use of a window as a
texture allows the programmer to create a texture image dynamically.

Textures must have a height of 2n pixels and width of 2m pixels where n and m
are integers. If not, the texture dimensions are automatically scaled down to the closest
power of 2. Rescaling affects application performance and may cause visual artifacts, so
it may be wise to create textures with appropriate sizes in the first place. Section 3.4
contains examples on how to use textures specified in the different forms.

A programmer can give the texture in one of two ways, one can use
WAttrib(“texture=…”)or the function Texture(t). These methods do differ in one
important way, a window cannot be used as a texture with WAttrib(). So a function call
must be made to Texture() if a window is to be used as a texture.

For textures, a programmer must specify how a texture is applied to particular
object. This is done by specifying texture coordinates and vertices. Since a texture image
can be viewed as a rectangular image, texture coordinates are x and y coordinates of the
texture image. So the texture coordinate (0.0, 0.0) corresponds to the lower left hand
corner of the texture image. The texture coordinates are mapped to the vertices specified
by the programmer. These vertices are usually the vertices of an object in the scene.
Together, the texture coordinates and the vertices determine what the scene looks like
after textures have been applied.

The design of textures in the Unicon 3D graphics facilities aims to simplify the
process of mapping a texture onto an object by setting defaults for texture coordinates.
There are several ways to specify texture coordinates. To use the defaults given by the
Unicon 3D graphics facilities, one can either use WAttrib(“texcoord=auto”) or
Texcoord(“auto”). The defaults are dependent on the type of primitive and are outlined
in the table 2.

If the programmer wishes to use texture coordinates other than the defaults, these
can be specified in several ways. One can use WAttrib(“texcoord=s”) where s is a
comma separated string of real number values between 0.0 and 1.0. Each pair of values
is to be taken as one texture coordinate; there must be an even number of decimal values
or the assignment of texture coordinates will fail. Also one can assign texture coordinates
by Texcoord(x1, y1, …) where each x and y are real number values between 0.0 and
1.0. Finally one can use Texcoord(L) where L is a list of real number texture
coordinates. The texture coordinates specified by the programmer are used differently
depending on the type of primitive to be drawn. If the primitive is a point, line, line
segment, polygon, or filled polygon, then a texture coordinate given is assigned to each
vertex. If there are more texture coordinates than vertices, the unused texture coordinates
are ignored. If there are more vertices than texture coordinates the application of a texture
will fail. In order to use non default texture coordinates with cubes, tori, spheres, disks,
and cylinders a programmer should approximate the desired mapping with filled
polygons. These specifications are given in the following table.

8

Table 2 – texture coordinates and primitives

Primitive Default Texture Coordinates
(from [OpenGL00] chapter 6)

Effect of
Non-default

Texture
Coordinates

Picture

Cube

The texture image is applied to each face of the
cube.

None

Sphere

Cylinder

The y texture coordinate ranges linearly from
0.0 to 1.0. On spheres this is from
z= -radius to z=radius; on cylinders, from
z = 0 to z = height. The x texture coordinate
ranges from 0.0 at the positive y-axis to 0.25 at
the positive x-axis, to 0.5 at the negative
y-axis to 0.75 at the negative x-axis back to 1.0
at the positive y-axis.

None

Filled
Polygon

Line

Polygon

Segment

The x and y texture coordinates are given by
p1x0+p2y0+p3z0+p4w0

A texture
coordinate is
assigned to a
vertex.

Torus The x and y texture coordinates are given by
p1x0+p2y0+p3z0+p4w0

None

9

3. Examples
The following section provides examples and a further description of the Unicon

3D graphics facilities.

3.1 Changing Context Attributes
As mentioned in the above design section, new context attributes have been added

to the Unicon 3D graphics facilities. The user can change these attributes throughout a
program. To change from an attribute, make a call to WAttrib() with the window to be
drawn on, the attributes to be changed, and their new values. Multiple attributes can be
changed with one call to WAttrib(). This is illustrated in the following line of code, where
the user changes the eye position to (0.0, 0.0, 5.0) and the eye direction to look at the
positive z-axis on the window w. Since an assignment to eyepos, eyedir, eyeup or
eye, redraws the screen it is important to note that the following will redraw the scene
once.

WAttrib(w, “eyepos=0.0,0.0,5.0”,“eyedir=0.0,0.0,1.0”)

The values of the attributes can also be read by using the function WAttrib().
By passing WAttrib() the window and the name of the attribute to be read, the user will
obtain the value of the specified attributes. For example, to obtain the value of the current
eye position, call

WAttrib(w, “eyepos”)

Multiple attributes can be read with one call to WAttrib(). This is shown in the
following line of code where the user reads the current value of the eye direction and up
direction.

every put(attrList, WAttrib(w, “eyedir”, ”eyeup”)

3.2 Drawing Primitives
The following is an example on how to use some of the functions to draw

primitives.

Fg(w, "ambient yellow")
 DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.5, -5.0, 0.5, 1.0)
 Fg(w, "diffuse white")
 DrawDisk(w, 0.4, -0.5, -4.0, 0.0, 1.0, 0.0, 225.0,1.0, 0.5, -5.0, 0.5,1.0,0.0,125.0)
 Fg(w, "ambient pink")
 DrawCylinder(w, 0.0, 1.0, -5.0, 1.0, 0.5, 0.3)
 Fg(w, "specular navy")
 DrawDisk(w, -0.5, -0.5, -2.0, 0.5, 0.3)
 Fg(w, "emission green")
 DrawSphere(w, 0.5, 1.0, -3.0, 0.5)
 WAttrib(w, "light0=on, diffuse white")

10

The function Fg(), specifies the material properties of an object. These material
properties affect the color and appearance of the primitives. After a call to Fg(), all
objects will be drawn with the material properties until the material property is changed
with another call to Fg(). In this example, a cube with a diffuse green material is drawn
with sides of length 0.7. Then a sphere with a diffuse purple and ambient blue material is
drawn with radius 0.5 and center (0.4, -0.5, -4.0). Next a diffuse yellow and ambient
grey torus with center (-1.0, 0.4, -4.0), an inner radius of 0.4, and an outer radius of 0.5
is drawn. Finally a filled polygon with a diffuse red material property and three vertices,
(0.25, -0.25, -1.0), (1.0, 0.25, -4.0) and (1.3, -0.4, -3.0) is drawn.

3.3 Lighting and Materials
There are a maximum of eight lights that can be used in each scene of the Unicon

3D graphics facilities. The lights are control by the context attributes light0 through
light7. Each light has five properties that can be changed throughout the program,
ambient, diffuse, specular, position, and on/off. The properties of a light can be changed
by using WAttrib() and one of light0 through light7. To turn on or off a light, one can
assign “on” or “off” to the light, followed by a comma and a lighting value. A lighting
value is a string which contains one or more semi-colon separated lighting properties. A
lighting property is of the form

diffuse
ambient color name
specular

If one does not want to turn on or off a light, a lighting value is specified. The
following is a line of code which turns light1 on and gives it diffuse yellow and ambient
gold lighting properties.

WAttrib(w, “light1=on, diffuse yellow; ambient gold”)

The following line of codes sets light0 to the default values for the lighting properties.

WAttrib(w, “light0=diffuse white; ambient black;
specular white; position 0.0, 1.0, 0.0”)

[]

11

The follow example shows the difference between the different types of lighting
that can be used in a scene. Each window is the same scene rendered using different
lighting. The upper right scene has an ambient blue-green light. The upper left scene was
drawn using a diffuse blue-green light. The lower right scene uses only a specular blue-
green light. The scene in the lower left uses all three types of lighting.

 w := open("ambient.icn","gl", "bg=black", "size=400,400")
 WAttrib(w, "light0=on, ambient blue-green", "fg=specular white")
 DrawCylinder(w, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
 DrawTorus(w,0.0, -0.2, -3.5, 0.3, 0.7)
 DrawSphere(w,0.0, 0.59, -2.2, 0.3)

 x := open("diffuse.icn","gl", "bg=black", "size=400,400")
 WAttrib(x, "light0=on, diffuse blue-green", "fg=specular white")
 DrawCylinder(x, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
 DrawTorus(x,0.0, -0.2, -3.5, 0.3, 0.7)
 DrawSphere(x, 0.0, 0.59, -2.2, 0.3)

 y := open("specular.icn","gl", "bg=black", "size=400,400")
 WAttrib(y, "light0=on, specular blue-green", "fg=specular white")
 DrawCylinder(y, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
 DrawTorus(y, 0.0, -0.2, -3.5, 0.3, 0.7)
 DrawSphere(y, 0.0, 0.59, -2.2, 0.3)

 z := open("all.icn","gl", "bg=black", "size=400,400")
 WAttrib(z, "light0=on, diffuse blue-green; specular blue-green; _
 ambient blue-green", "fg=specular white")
 DrawCylinder(z, 0.0, -0.2, -3.5, 0.75, 0.5, 0.0)
 DrawTorus(z, 0.0, -0.2, -3.5, 0.3, 0.7)
 DrawSphere(z, 0.0, 0.59, -2.2, 0.3)

12

Materials can be changed using Fg() or WAttrib() with the context attribute fg. A
material value is a string containing one or more semi-colon separated material
properties. Material properties are of the form

diffuse
ambient color name or “shininess n”, where n is between 0 and 128.
specular
emission

The default material property type is diffuse, so the call Fg("red") is equivalent to
Fg("diffuse red"). For shininess, a value of 0 spreads specular light broadly across an
object and a value of 128 focuses specular light at a single point. The following line of
code changes the current material property to diffuse green and ambient orange.

 WAttrib(w, “fg=diffuse green; ambient orange”)

The default values of the material properties are given in the following example.

Fg(w, “diffuse light grey; ambient grey; _
 specular black; emission black; shininess 50”)

The following is an example of several different material properties used within one
scene.

Fg(w, "diffuse blue")
DrawCylinder(w, 0.0, -0.2, -3.5, 1.2, 1.0, 0.0)

 Fg(w, "diffuse red")
 DrawTorus(w, 0.0, -0.2, -3.5, 0.3, 1.0)
 Fg(w, "diffuse white; ambient red")
 DrawTorus(w, 0.0, 0.2, -3.5, 0.3, 0.9)
 Fg(w, "shininess 10; diffuse red; specular red; ambient black")
 DrawTorus(w, 0.0, 0.55, -3.5, 0.3, 0.72)

First a cylinder with a diffuse blue material is drawn. Then the bottom torus is
drawn, which has a diffuse red material. Next the middle torus is draw with a diffuse

13

[]

white and ambient red property. Finally the top torus is drawn with a diffuse red, specular
red and ambient property, and shininess of 10. Notice, that in order an object not to be
drawn with a previous material property, that property must be reset to its default.

The following example shows the effects of emission color on an object.

 Fg(w, "emission blue; diffuse yellow")
 DrawSphere(w, -1.5, 1.0, -5.0, 0.7)
 Fg(w, "emission black")
 DrawSphere(w, 0.0, 0.0, -5.0, 0.7)
 Fg(w, "emission red")
 DrawSphere(w, 1.5, -1.0, -5.0, 0.7)

In the above example, there are three diffuse yellow spheres drawn. If an emission
color of blue is applied to the sphere, the sphere appears white with a blue ring. If the
emission color is red, the sphere remains yellow, but now has an orange-red ring. The
middle sphere shows the effect of having no emission color. Note that in order to obtain
the diffuse yellow sphere in the center, the emission color had to be change to black. It
was not needed to change the diffuse material property.

3.4 Textures
This section contains several examples of the use of textures in a scene. There are

several ways to specify the texture image in the Unicon 3D graphics facilities: a file, an
image string, or another Unicon window. The following example shows how to use a file
as a texture. A .gif image of a map of the word is used to texture a torus. The texture
coordinates are the default coordinates as describe in 2.7.

14

 WAttrib(w, "texmode=on", "texture=map.gif")
 DrawTorus(w, 0.0, 0.0, -3.0, 0.3, 0.4)

 Instead of using WAttrib(w, "texture=map.gif") to specify the .gif file, a call to
Texture(w, "map.gif") could be used to obtain the same result.

The next example illustrates the use of an image string to specify a texture image.
The format of the string is described in section 2.7. The string used for this example is
taken from Graphics Programming in Icon [Griswold98] page 156. This string is used as
a texture on a cube using the default texture coordinates.

 WAttrib(w, "texmode=on")
 sphere:= "16,g16, FFFFB98788AEFFFF" ||
 "FFD865554446AFFF FD856886544339FF E8579BA9643323AF"||
 "A569DECA7433215E 7569CDB86433211A 5579AA9643222108"||
 "4456776533221007 4444443332210007 4333333222100008"||
 "533322221100000A 822222111000003D D41111100000019F"||
 "FA200000000018EF FFA4000000028EFF FFFD9532248BFFFF"
 Texture(w, sphere)
 DrawCube(w, 0.0, 0.0, -3.0, 1.2)

The next example shows the use of another Unicon window as a texture. A simple
scene of a lamp is drawn on the first window, which is opened in “gl” mode. This window
is then captured and used as a texture on a cylinder. If a Unicon window opened in “g”
mode as a texture the same method can be used. Note that in the following code the first
window is opened with size 256 x 256. Texture images must have height and width that
are powers of 2, or the system must rescale them. The default coordinates for cylinders
are used.

15

w := open("win1","gl","bg=light blue","size=256,256")
 Fg(w, "emission pale grey")
 PushMatrix(w)
 Rotate(w, -5.0, 1.0, 0.0, 0.0)
 DrawCylinder(w, 0.0, 0.575, -2.0, 0.15, 0.05, 0.17)
 PopMatrix(w)
 Fg(w, "diffuse grey; emission black")
 PushMatrix(w)
 Rotate(w, -5.0, 1.0, 0.0, 0.0)
 DrawCylinder(w, 0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
 PopMatrix(w)
 DrawTorus(w, 0.0, -0.22, -2.5, 0.03, 0.06)
 DrawTorus(w, 0.0, 0.6, -2.5, 0.05, 0.03)

w2 := open("win2.icn","gl","bg=black","size=400,400")
 WAttrib(w2, "texmode=on")
 Texture(w2, w)
 Fg(w2, "diffuse purple; ambient blue")

DrawCylinder(w2, 0.0, 0.0, -3.5, 1.2, 0.7, 0.7)

The next two examples illustrate the use of the default texture coordinates versus
texture coordinates specified by the programmer. In both examples, a bi-level image is
used as the texture image. The format for such a string is described in section 2.7. This
image is taken from Graphics Programming in Icon [Griswold98] page 159. The first
example uses the default texture coordinates for a filled polygon, which in this case is just
a square with sides of length one. In this case the default texture coordinates are as
follows. The coordinate (0.0, 0.0) of the texture image is mapped to the vertex (0.0, 0.0,
-2.0) of the square, (0.0, 1.0) is mapped to (0.0, 1.0, -2.0), (1.0, 1.0) is mapped to (1.0,
1.0, -2.0), and (1.0, 0.0) is mapped to (1.0, 0.0, -2.0).

16

 WAttrib(w, "fg=white", "bg=blue", "texmode=on", "texture=4,#8CA9")
 Fg(w, "diffuse purple; ambient blue")
 FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

This example uses the same texture image and the same object to be textured, but
instead uses the texture coordinates (0.0, 1.0), (1.0, 1.0), (1.0, 1.0), and (1.0, 0.0). So
the coordinate (0.0, 1.0) of the texture image is mapped to the vertex (0.0, 0.0, -2.0) of
the square, (1.0, 1.0) is mapped to (0.0, 1.0, -2.0),(1.0, 1.0) is mapped to (1.0, 1.0, -2.0),
and (1.0, 0.0) is mapped to (1.0, 0.0, -2.0).

 WAttrib(w, "fg=white", "bg=blue", "texmode=on",
 "texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0", "texture=4,#8CA9")
 FillPolygon(w, 0.0, 0.0, -2.0, 0.0, 1.0, -2.0, 1.0, 1.0, -2.0, 1.0, 0.0, -2.0)

Also instead of using WAttrib() with the attribute texcoord, the function
Texcoord() could be used. So the line

WAttrib(w,"texcoord=0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0")

could be replaced by

Texcoord(w, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0,1.0, 0.0)

17

3.5 A Larger Textures Example
The following is a more complicated example that uses many features of the

Unicon 3D graphics facilities described in the previous sections. This example also
illustrates the effect that adding texture to a scene can have. The scene on the left is a
scene drawn without any texturing. The scene on the right contains texturing. The scene
on the right is a much more realistic scene than the one on the left.

All textures used in the textured scene, except for the unicorn, where captured
using a digital camera. These images were then converted into .gif files and scaled to
width and height of 2n. Directly using an image file is one feature of the Unicon 3D
graphics facilities that makes adding textures simpler than using OpenGL.

 A untextured scene A textured scene

procedure main()
 &window :=open("textured.icn","gl","bg=black","size=700,700")

 # Draw the floor of the room
 WAttrib("texmode=on", "texture=carpet.gif")
 FillPolygon(-7.0, -0.9, -14.0, -7.0, -7.0, -14.0,
 7.0, -7.0, -14.0, 7.0, -0.9, -14.0, 3.5, 0.8, -14.0)

 # Draw the right wall
 WAttrib("texture=wall1.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")
 FillPolygon(2.0, 4.0, -8.0, 8.3, 8.0, -16.0, 8.3, -1.2, -16.0, 2.0, 0.4, -8.0)

 # Draw the left wall
 WAttrib("texture=wall2.gif")
 FillPolygon(2.0, 4.0 ,-8.0, -9.0, 8.0, -16.0, -9.0,-1.2,-16.0, 2.0, 0.4, -8.0)

 # Draw a picture
 WAttrib("texture=poster.gif", "texcoord=0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0")
 FillPolygon(1.0, 1.2, -3.0, 1.0, 0.7, -3.0, 1.2, 0.5, -2.6, 1.2, 1.0, -2.6)

 # Draw another picture

18

 WAttrib("texture=unicorn.gif", "texcoord=1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0")
 FillPolygon(0.8, 2.0, -9.0, -3.0, 1.6, -9.0, 3.0, 3.9,-9.0, 0.8, 4.0, -9.0)

 # Draw the lamp
 WAttrib("texmode=off")
 PushMatrix()
 Translate(0.7, 0.20, -0.5)
 Fg("emission pale weak yellow")
 PushMatrix()
 Rotate(-5.0, 1.0, 0.0, 0.0)
 Rotate(5.0, 0.0, 0.0, 1.0)
 DrawCylinder(-0.05, 0.570, -2.0, 0.15, 0.05, 0.17)
 PopMatrix()
 Fg("diffuse grey; emission black")
 PushMatrix()
 Rotate(-5.0, 1.0, 0.0, 0.0)
 Rotate(6.0, 0.0, 0.0, 1.0)
 DrawCylinder(0.0, 0.0, -2.5, 0.7, 0.035, 0.035)
 PopMatrix()
 PushMatrix()
 Rotate(6.0, 0.0, 0.0, 1.0)
 DrawTorus(-0.02, -0.22, -2.5, 0.03, 0.05)
 PopMatrix()
 PopMatrix()

 # Draw the table
 WAttrib("texcoord=auto", "texmode=on", "texture=table.gif")

 PushMatrix()
 Rotate(-10.0, 1.0, 0.0,0.0)
 DrawCylinder(0.0, 0.2, -2.0, 0.1, 0.3, 0.3)
 PopMatrix()

 PushMatrix()
 Translate(0.0, -0.09, -1.8)
 Rotate(65.0, 1.0, 0.0, 0.0)
 DrawDisk(0.0, 0.0, 0.0, 0.0, 0.29)
 PopMatrix()

 WAttrib("texmode=off", "fg=diffuse weak brown")
 PushMatrix()
 Rotate(-20.0, 1.0, 0.0,0.0)
 DrawCylinder(0.0, 0.2, -2.2, 0.3, 0.1, 0.1)
 PopMatrix()
 while (e := Event()) ~== "q" do {
 write(image(e), ": ", &x, ",", &y)
 }
end

19

In orderto applytexturesto thescene,texturingmustfirst beturnedon. Next, the
textureto beappliedis specified.Thenthe floor of thesceneis drawn,which is doneby
using a filled polygon. The default texture coordinates are used to apply the carpet texture
to the floor of the room.The tiled appearanceon the floor of the room is causedby the
useof thedefaulttexturecoordinates.This canbeavoidedby usinguserdefinedtexture
coordinates.This is what is donefor the texturesthatareappliedto the two walls of the
room and the pictures.

The lamp doesnot haveany texturingappliedto it, so it is necessaryto turn off
texturingbeforedrawingthelamp.Also for thelampto becenteredproperlyin theroom,
transformationsareused.Notice theuseof matricesto isolatethe transformationsof the
lamp.Finally to drawthetablewith a texturedtop andanuntexturedbase,two cylinders
and a disk are used. Texturing is applied to a cylinder and the disk. Notice the call
 WAttrib(w, "texcoord=auto")
This resetsthe texturecoordinatesto thedefaults.Finally, texturingis turnedoff to draw
the base of the table.

3.6Animation

Graphicsanimationis performancesensitive,andUnicon is substantiallyslower
thanlower level systemsprogramminglanguagessuchasC andC++. Nevertheless,it is
possibleto prototypesimple3D animationsusingUnicon;applicationswith few moving
objects can achieve smooth animation with acceptable frame rates.

In OpenGL,animationsarenormallywritten to redrawtheentiresceneeachtime
any object has moved, or the user has changedpoint of view. An application can
repeatedlycall EraseArea()followed by the appropriategraphicsprimitives to achieve
this effect, but the resultsoften appearto flicker. It is better to let OpenGL'sbuilt-in
doublebuffering, andUnicon'sruntimesystem,do the redrawing. Unicon maintainsa
display list of graphicsoperationsto executewheneverthescreenmustberedrawn;these
operationsare effectively everythingsince the last EraseArea().The display list for a
window can be obtainedby calling WindowContents().The elementsof the list are
Unicon records and lists containing the string names and parametersof graphics
primitives. For example,a call to DrawSphere(w,x,y,z,r)returns(andaddsto thedisplay
list) a recordgl_sphere(“DrawSphere”,x, y, z, r). Insteadof redrawingthe entirescene
in orderto moveanobject,you canmodify its displaylist recordandcall Refresh().The
following codefragmentillustratesanimationby causinga ball to slide up anddown.In
order to “bounce” the program would need to incorporate physics.

sphere := DrawSphere(w, x, y, z, r)
increment := 0.2
every i := 1 to 100 do {
 every j := 1 to 100 do {
 sphere.y +:= increment
 Refresh(w)
 }
 }

This techniquegives animationratesof 100-200framesper secondin simple testson
currentmidrangePChardware,indicatingthatthesystemwill supportsmoothanimation,
at least for small numbers of objects.

20

4. Open Issues and Conclusions
The Unicon 3D graphicsfacilities provide many of the featuresof 3D graphics

programming.Severalareasin which improvementsand extensionscan be madehave
been discussedwhere appropriatein previous sections.Besidesthose topics already
mentionedthroughoutthe paper,thereareseveralareaswherework could still be done.
Theseareasinclude animation,composition,and simplification of the design of the
matrix stack.

The Unicon 3D graphics facilities do not contain special features to simplify the
process of animation. Future work may include the examination of different ways to
directly support animation in Unicon.

Compositionis viewing severaldifferent piecesas one piece.For example,say
the userwantsto implementa moving car.To do this, the userwould needto breakthe
car into severalpieces,possibly,four tires,a carbody,windows,andlights.To makethe
processof simulatingthemovingcareasier,onewould like theseindividual piecesto be
onepiece.Currently,a Unicon programmercandevelopsuchapplicationsusingthe 3D
graphicsfacilities. The questionremainswhethercompositionshould be addedas a
feature of the Unicon 3D graphics facilities.

Thedesignof matricesandtransformationin theUnicon3D graphicsfacilities is
similar to the designof OpenGL.For this reason,there is no advantagegainedover
OpenGLin the areaof transformations.It might be necessaryin the future to consider
waysto simplify matricesandtransformationin Unicon.Oneimprovementto consideris
a reductionin the numberof parametersneededfor function like Translate(), Rotate()
andScale(). Theeliminationof theneedfor two differentmatrix stacksmight beanother
simplification.

The current Unicon 3D graphicsfacilitates have made an improvementover
OpenGLin termsof the numberof lines of codedneededto implementa 3D graphics
application.Programmersthatwant to develop3D graphicsapplicationsbut do not have
the time to learnoneof the standardtoolkits might find this projectvaluable.Although
theUnicon3D graphicsfacilities providethe importantfeatureof 3D graphics,thereare
somelimitations. One limitation might be the lack of somefeaturein Unicon that are
availablein OpenGL.Another limitation might be the useof defaultparametersthat are
usedin somefeatureof the Unicon 3D graphicsfacilities. Thesedefaultsreducethe
flexibility of the programmerandwill be seenasa restrictionby some.Futurework on
the Unicon 3D graphics facilities might include the addition of attributes or other
mechanismsto removethoseof theselimits which prove to be problems.The current
Unicon 3D graphicsfacilities providea basisin which 3D graphicscanbe implemented
in Unicon.

5. Functions and Attributes
The built-in functions attributes in the Unicon 3D graphics facilities are described

in this section. For all functions with a window argument W, the parameter can be
omitted. Also the use of “…” indicates that more arguments can be given. By doing this,
the result is similar to that of multiple function calls. The window argument should not be
specified again for this case.

21

5.1 New Functions

The functions in this section have been added specifically for the Unicon 3D
graphics facilities.

DrawCube(file, real, real, real, real,…): record draws a cube

DrawCube(W, x, y, z, l…) draws a cube with sides of length l at the position (x, y, z) on
the window W. The display list element is returned. This procedure fails if the context
attribute, dim, is set to 2.

DrawCylinder(file, real, real, real, real, real, real,…): record draws a cylinder

DrawCylinder(W, x, y, z, h, r1, r2, …) draws a cylinder with a top of radius r1, a bottom
with radius r2, and a height h. The disk is centered at the point (x, y, z). The display list
element is returned. This procedure fails if the context attribute dim is set to 2.

DrawDisk(file, real, real, real, real, real, real, real,…): record draws a partial disk

DrawDisk(W, x, y, z, r1, r2, a1, a2, …) draws a disk on the window W centered at (x, y,
z). The inner circle has radius r1 and the outer circle has radius r2. The parameters a1 and
a2 are optional. If they are specified, a partial disk is drawn with a starting angle a1 and
sweeping angle a2. The display list element is returned.

DrawSphere(file, real, real, real, real,…): record draws a sphere

DrawSphere(W, x, y, z, r,…) draws a sphere with radius r centered at (x, y, z) on the
window W. The display list element is returned. This procedure fails if the context
attribute dim is set to 2.

DrawTorus(file, real, real, real, real, real,…): record draws a torus

DrawTorus(W, x, y, z, r1, r2,…) draws a torus with inner radius r1, outsider radius r2,
and centered at (x, y, z) on the window W. The display list element is returned. This
procedure fails if the context attribute dim is set to 2.

IdentityMatrix(file): record loads the identity matrix

IdentityMatrix(W) changes the current matrix to the identity matrix. The display list
element is returned.

MatrixMode(file, string): record changes the matrix mode

MatrixMode(W, s) changes the matrix mode to s. The string s must be either “projection”
or “modelview”. Otherwise this procedure fails. The display list element is returned.

22

PopMatrix(file): record pops a matrix from the matrix stack

PopMatrix(W) pops the top matrix from the matrix stack. The matrix stack is determined
by the current matrix mode, either “projection” or “modelview”. This procedure fails if
there is only one matrix on the matrix stack. The display list element is returned.

PushMatrix(file): record pushes a matrix onto the matrix stack

PushMatrix(W) pushes a copy of the current matrix onto the matrix stack. The current
matrix mode determines what stack the new matrix is pushed upon. This procedure fails
if the matrix mode is “projection” and there are already two matrices on the stack. If the
matrix mode is “modelview” and there are already thirty two matrices on the stack, then
this procedure will fail. The display list element is returned.

Refresh(file):file redraws the window

Refresh(W) redraws the contents of the window. The window W is returned.

Rotate(file, real, real, real, real,…): record rotates objects

Rotate(W, a, x, y, z,…) rotates objects affected by this transformation by the angle a, in
the direction (x, y, z). The display list element is returned.

Scale(file, real, real, real,…): record scales objects

Scale(W, x, y, z,…) scales object according to the given x, y and z coordinates. The
display list element is returned.

Texcoord(file, X):list defines texture coordinates

Texcoord(W, x1, y1, …, xn, yn) sets the texture coordinates to x1, y1, …, xn, yn. Each x, y,
pair forms one texture coordinate. Every x must match to a y otherwise the assignment of
texture coordinates will fail.
Texcoord(W, L) sets the texture coordinates to those specified in the list L.
Texcoord(W, s) sets the texture coordinates to those specified by s. The string s must be
“auto” otherwise the procedure will fail. In all cases the display list element is returned.

Texture(file, X): record applies a texture

Texture(W, s) creates a texture image that is applied to subsequent objects on the window
W. The string s specifies the texture image as a filename, a string of the form
width,pallet,data or width,#,data, where pallet is a pallet from the Unicon 2D graphics
facilities and data is the hexadecimal representation of an image. The display list element
is returned.
Texture(W1, W2) creates a texture image that is applied to subsequent objects on the
window W1. The file W2 is another Unicon window. The contents of W2 are used to
create the texture image. The display list element on W1 is returned.

23

Translate(file, real, real, real,…): record translates objects

Translate(W, x, y, z,…) moves objects affected by this transformation in the direction
(x, y, z). The display list element is returned.

WindowContents(file):list produce contents of window

WindowContents(W) returns a Unicon list of display elements, which are records or lists.
Each element has a function name followed by the parameters of the function, or an
attribute followed by its value. The display list is further described in section 3.6.

5.2 Extensions from the 2D Graphics Facilities
Several functions from the Unicon 2D graphics facilities have been modified for

use in the 3D facilities. This section describes the parameters and use of these functions.

DrawLine(file, real, real, real, …): list draw a line

DrawLine(W, x1, y1, z1, …,xn, yn, zn) draws a line connecting the n vertices specified by
(x, y, z). If only one set of vertices is given, then no line is drawn. If the attribute dim is
set to 2, then DrawLine(W, x1, y1,…,xn, yn) draws a line connecting the n vertices of the
form (x, y). If the attribute dim is set to 4, then
DrawLine(W, x1, y1,z1, w1…,xn, yn,zn, wn) draws a line connecting the n vertices of the
form (x, y, z, w). The display list element is returned.

DrawPoint(file, real, real, real, …): list draw points

DrawPoint(W, x1, y1, z1, …) for each set of vertices (x, y, z) a point is drawn. If the
attribute dim is set to 2, then DrawPoint(W, x1, y1,…) draws points of the form (x, y). If
the attribute dim is set to 4, then DrawPoint(W, x1,y1,z1,w1…) draws points of the form
(x, y, z, w). The display list element is returned.

DrawPolygon(file, real, real, real, …): list draw a polygon

DrawPolygon(W, x1, y1, z1, …, xn, yn, zn) draws an outline of a polygon formed by
connecting the n vertices of the form (x, y, z). If the value of the context attribute dim is
2 then DrawPolygon(W, x1, y1, …, xn, yn) draws an outline of a polygon using the n
vertices of the form (x, y). If dim is set to 4, then DrawPolygon(W, x1, y1, z1, w1 …, xn,
yn, zn, wn) draws an outline of a polygon formed by connecting the n vertices of the
form (x, y, z, w). The display list element.

DrawSegment(file, real, real, real, …): list draws segments

DrawSegment(W, x1, y1, z1, x2, y2, z2,…) draws a line segment between a pair of
vertices of the form (x, y, z). If the context attribute dim has value 2 then
DrawSegment(W, x1, y1, x2, y2,…) draws a line segment between a pair of vertices of

24

the form (x, y). If the context attribute dim has value 4 then DrawSegment(W, x1, y1, z1,
w1, x2, y2, z2, w2,…) draws a line segment between a pair of vertices of the form (x, y,
z, w). If an odd number of vertices if given, then the last vertex is ignored. The display
list element is returned.

EraseArea():file clears the contents of the window

EraseArea(W) clears the contents of the window. Although the 2D facilities allow for
specifying a specific area, EraseArea() erases the entire contents of a 3D window.

Fg(file, string):string writes/reads the current foreground color

Fg(W, s) changes the material properties of subsequently drawn objects to the material
properties specified by s. The string s must be one or more semi-colon separated material
properties. A material property is of the form

 diffuse
 ambient color name or “shininess n”, where n is between 0 and 128.
 specular
 emission

If string s is omitted, the current values of the material properties will be returned.

FillPolygon(file, real, real, real, …): list draws a filled polygon

FillPolygon(W, x1, y1, z1, …, xn, yn, zn) draws a filled polygon formed from the n
vertices of the form (x, y, z) and the current foreground color. If the context attribute dim
is set to 2, then FillPolygon(W, x1, y1, …, xn, yn) draws a filled polygon formed from the
n vertices of the form (x, y) and the current foreground color. If dim is set to 4, then
FillPolygon(W, x1, y1, z1, w1 …, xn, yn, zn, wn) draws a filled polygon formed from the
n vertices of the form (x, y, z, w) and the current foreground color. The display list
element is returned.

5.3 New Attributes
This section describes the new context attributes that have been added specifically

for the 3D graphics facilities.

dim dimensionality of graphic objects

The functions DrawLine(), DrawPolygon(), DrawSegment(), DrawPoint(), and
FillPolygon(), use the value of dim to determine how many coordinates each vertex has. If
“dim = 2” then DrawTorus(), DrawSphere(), DrawCube(), and DrawCylinder() cannot be
used.

Values: “2”, “3”, or “4”
Default value: “3”

[]

25

eye point of view

This attribute assigns the eyepos, eyedir, and eyeup attributes.

Default value: “(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)”

eyedir eye direction

The eye direction is the direction in which the eye is looking.

Default value: “(0.0, 0.0, 0.0)”

eyepos eye position

The eye position is the where the eye is currently located.

Default value: “(0.0, 0.0, 0.0)”

eyeup up direction

The eyeup attribute specifies what direction is up in the scene.

Default value: “(0.0, 1.0, 0.0)”

light0 ... light7 light source properties

There are eight lights in the Unicon 3D graphics facilities. Each light can be assigned
values to each of its properties on/off, diffuse, ambient, specular, and position. The values
of diffuse, ambient, specular are a color specification. The position is given by a (x, y, z)
coordinate. The default values are as follows for the lights.

Light On/Off Diffuse Ambient Specular Position
light0 On white black white (0.0, 0.0, 1.0)
light1-
light7

Off black black black (0.0,0.0,1.0)

texcoord texture coordinates

The attribute texcoord can be assigned the value “auto”, or a string of texture coordinates.
If texcoord has the value “auto”, texture coordinates are determined by the Unicon 3D
graphics facilities. Otherwise texture coordinates, which are pairs (x, y) with x and y are
between 0.0 and 1.0, are obtained from attribute texture.

Default: “auto”.

26

texmode enable/disable texturing

If texmode has the value “on”, then textures are mapped onto drawn objects. Otherwise
texmode has the value “off”, which indicates objects are drawn using the background
color. By default texmode has the value “off”.

texture texture image

The attribute texture is assigned a filename or a string of the following format.
 width,pallet,data or width,#,data
where pallet is a pallet defined in the Unicon 2D graphics facilities and data is the
hexadecimal representation of an image. The value assigned to texture is used to create a
texture image which is applied to subsequent objects on the window.

5.4 Extensions from the 2D Graphics Attributes
Several attributes have been extended to be used in the 3D graphics facilities. The

new meanings of these attributes are described in this section.

fg foreground color and material properties

The string assigned to fg must be one or more semi-colon material properties. A material
property is of the form

 diffuse
 ambient color name or “shininess n”, where n is between 0 and 128.
 specular
 emission

linewidth width of lines

The line width in 3D windows is a real number in world coordinates.

Default value: "1.0"

[

27

]

References

[Foley82] Foley, J.D; and A.Van Dam. Fundamentals of Interactive Computer
Graphics. Reading, MA: Addison-Wesley Publishing Company, 1982.

[Griswold96] Griswold, Ralph E and Griswold, Madge T. The Icon Programming
Language, Third Edition. San Jose, CA: Peer-To-Peer Communications,
1996.

[Griswold98] Griswold, Ralph E.; Jeffery, Clinton L.; and Townsend, Gregg M.
Graphics Programming in Icon. San Jose, CA: Peer-To-Peer
Communications, 1998.

[Jeffery03] Jeffery, Clinton; Mohamed, Shamim; Pereda, Ray; and Parlett, Robert.
Programming with Unicon. Draft manuscript from
http://unicon.sourceforge.net

[JeffMart03] Jeffery, Clinton and Martinez, Naomi. The Implementation of Graphics in

Unicon Version 11. Unicon Technical Report #5a, http://unicon.sf.net,
2003.

[OpenGL99] OpenGL Architecture Review Board; Woo, Mason; Neider, Jackie; Davis;

Tom; Shreiner, Dave. OpenGL Programming Guide: the Official Guide to
Learning OpenGL, Third Edition. Reading, MA: Addison-Wesley
Publishing Company, 1999.

[OpenGL00] OpenGL Architecture Review Board; Shreiner, Dave.
OpenGL Programming Guide: the Official Reference Document to
OpenGL, Third Edition. Upper Saddle Reading, MA: Addison-Wesley
Publishing Company, 2000.

[Walker94] Walker, Kenneth; The Run-Time Implementation Language for Icon.
Technical Report from http://www.cs.arizona.edu/icon/

28

